--%>

Efficient use of waste heat and renewable heat sources

Efficient use of waste heat and renewable heat sources

1. Describe how you might recover heat from (a) a process exhaust gas stream (e.g. from an oven) and (b) a process warm water stream (e.g. from a commercial dishwasher). Discuss any aspects of the streams that may influence your choice of heat recovery system.

2. An industrial dryer operates for 60 hours/week, 50 weeks/year. It exhausts 200 kW/hr of heat and the value of the energy is 6p/kWh. A heat exchanger of 50% efficiency is put into the exhaust stream to recover a proportion of this heat. The installed cost of the heat exchanger is £22,500. The heat exchanger pressure drop needs a 2 kW fan to overcome it, and the cost of electricity is 10p/kWh

Calculate the simple payback period for the installation, taking into account the running costs, as well as the benefits.

3. A domestic air conditioning unit has a COPc of 2 Thinking of the refrigeration cycle and the inefficiencies in the various components, how could you attempt to increase the COP by modifying components?

4. The industrial dryer in Question 2 currently uses a heat exchanger for heat recovery. If the exhaust air is highly humid, as would be common on a dryer, there would be advantages in recovering latent heat as well as sensible heat. (Often you will find that the latent heat content is substantially greater than the sensible heat content).

Discuss how you might configure a heat pump which could recover the latent heat (and sensible heat) from the exhaust air then deliver it to the incoming fresh air. Is it possible now to recycle the exhaust air? If so, how would you reheat it?

5. Prime movers are being studied for powering combined heat & power (CHP) units in the home and in industry.

Sketch how the heat from these prime movers (e.g. a gas turbine, a small Diesel engine or another prime mover) can be recovered for (a) water heating, (b) providing chilled water (an outline of appropriate refrigerating equipment is required). 

   Related Questions in Mechanical Engineering

  • Q : Undamped single degree of freedom (a)

    (a) The response for an undamped single degree of freedom system under free vibration is given as where ωn is the natural frequency and A and B are unknown that can be determined from the initial conditions. The response 

  • Q : Problem on steam turbine 1) A steam

    1) A steam turbine takes in saturated steam at 300oc and outputs steam at 4 bar. When the efficiency of the turbine is 65%, Evaluate: a.  The final composition (vapor vs. liquid) of outgoing steam.b.  The

  • Q : Problem on work of compression A diesel

    A diesel engine operates devoid of a spark plug by using the high-temperature gas produced throughout the compression stage to ignite the fuel. During a typical compression, pure air that is originally at 21 °C and 0.95 bar is reversibly and adiabatically compress

  • Q : Size and weight in Product design

    Size and weight: If the product is particularly small the cost may be increased if more precise manufacturing methods are demanded. Weight restriction will as well influence materials to be utilized: this in turn will influence the manufacturing proce

  • Q : Centrifugal Pump and Reciprocating Pump

    Out of Centrifugal Pump or the Reciprocating Pump, which pump is more efficient?

  • Q : Solution A pump station has been

    A pump station has been designed to lift water out of a 6 metre deep pit (vented to atmosphere) via a centrifigual pump mounted at ground level. Liquid conditions 20OC Suction pipe work losses 2.0 metres NPSH safety factor 5.0 kPa Vapor pressure @ 20oC 0.25 metres (a) Calculat

  • Q : What is carnot engine Explain the term

    Explain the term Carnot engine?

  • Q : Formulating equation of motion Figure

    Figure below shows a reinforced concrete framed building subjected to earthquake ground motion. The floor is rigid with the mass of each floor is shown in the figure. Formulate the equation of motion for this building. Prove that the natural frequenci

  • Q : Bearing number ti Diameter of inner and

    Specify how the Bearing number ti Diameter of the inner and outer can be calculated?

  • Q : Working environment in Product design

    Working environment: The conditions under which the product is likely to be used, stored, and transported must be specified. The product may have to operate in conditions of extreme temperature, be subject to vibration, radiation; these conditions wil