--%>

Dynamic model for the paper machine headbox

Explain and derive the Dynamic model for the paper machine headbox?

E

Expert

Verified

We'll first develop a dynamic model for the paper machine headbox.

A stock balance around the headbox. A suffix hb refers to the head box.

Accumulation = Input – Output

dmhb/dt = ρqin – ρqout

Now ρ, is the stock density, but since the consistancy is 0.5% only,  ρ = ρw = Water density

d(ρVhb)/dt = ρqin – ρqout

dVhb/dt = qin – qout

Ahbdh/dt = qin – qout

where, Ahb, is the c/s area of header and assumed to be constant.

qout, is the flow out of the header, and is only through slice, and can be written as, CAs(2gh)1/2, where As, is the cross sectional area of slice perpendicular to the flow, and C is characteristic constant coefficient for the slice.

Hence,
Ahbdh/dt = qin – CAs(2gh)1/2,

To find, we can write Bernoulli's equation between Vacuum Degasser and Headbox. Suffix vd refers to vacuum degasser.

Pvd/ρ + W = (Phb + ρgh)/ρ + V2/2
 
V = {2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2

qin = AinV =  Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2

Hence the dynamic model is,

Ahbdh/dt = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 – CAs(2gh)1/2,

where the rate of stock height change in head box is related to the pressure in vacuum degasser and height.

We have to linearize the non linear dynamic model.

So that the effective model will be,

τdh'/dt = KpP'hb  + Khh',

So as we see the the response of the height of stock to variations in vacuum degasser pressure is first order lag. We don't know the dynamics of level sensor or transmitter, but we'll assume it's also first order lag.

Hence the effective system will be a second order. And hence it'll be oscillatory, and we propose the PID controller for level control by manipulating the speed of fan pump.

Using MATLAB control toobox and given values of the parameters in the problem, we approximately find the following controller parameter settings.

    Kc = 9.6, τI = 2.3 min, τD = 3.5 min.

Similarly, a propotional integral controller is proposed for pressure control in head box.

The pressure in the head box is related to in flow of air, which is controlled by PI controller.
The air is available at pressure of 300 kPa.

dPhb/dt = f(Qin), where is the inlet flow rate of air.

This will be pure capacitive system, hence we propose PI controller.

We find the controller parameters for this,

Kc = 14.5, τI = 4.5 min.

   Related Questions in Mechanical Engineering

  • Q : Safety in Product design specification

    Safety: The specifications should state the possible abuse and misuse the product might be subjected to. Warning labels and instructions on safe operation of the product should be given. The designer can be held accountable for any accidents that migh

  • Q : Rated Speed and Economic Speed Explain

    Explain difference between the Rated Speed and Economic Speed?

  • Q : What is cotter joint Explain what is

    Explain what is meant by the Cotter joint?

  • Q : Benefits of gear drive Benefits of gear

    Benefits of gear drive: In general, gear drive is helpful for power transmission among two shafts, which are close to each other (at most at 1m distance). Additionally, it has maximum efficiency while transmitting power. It is resilient as compare to

  • Q : Define Product Design Specification

    Product Design Specification: Once the basic idea for a product has been made, the next step is to create a product design specification, or PDS. This document must be as comprehensive and as detailed as possible as it forms the basis of all the work

  • Q : What is wrap-around Wrap-around : The

    Wrap-around: The main aim of a wrap-a-round is to make a straight line about a pipe to help in cutting the pipe to its appropriate length. It is employed mostly as a straight edge or a template.   

  • Q : Product appearance in Product design

    Product appearance: Strongly influenced by the Industrial Designer, the general style? of the product is significant as this will have an influence on materials and manufacturing procedures to be used. The product should be able to grab the customer's

  • Q : Stop cooling-water flow in turbine

    Whether you stop cooling-water flow through steam condenser when the turbine is slopped?

  • Q : Modal Combination Rules What are the

    What are the Modal Combination Rules in order to determine the peak value of the total response?

  • Q : What is Cotter joint Cotter joint :

    Cotter joint: These kinds of joints are employed to connect two rods that are under compressive or tensile stress. The ends of rods are in the way of a socket and shaft which fit altogether and the cotter is driven into a slot which is common to both