--%>

Dynamic model for the paper machine headbox

Explain and derive the Dynamic model for the paper machine headbox?

E

Expert

Verified

We'll first develop a dynamic model for the paper machine headbox.

A stock balance around the headbox. A suffix hb refers to the head box.

Accumulation = Input – Output

dmhb/dt = ρqin – ρqout

Now ρ, is the stock density, but since the consistancy is 0.5% only,  ρ = ρw = Water density

d(ρVhb)/dt = ρqin – ρqout

dVhb/dt = qin – qout

Ahbdh/dt = qin – qout

where, Ahb, is the c/s area of header and assumed to be constant.

qout, is the flow out of the header, and is only through slice, and can be written as, CAs(2gh)1/2, where As, is the cross sectional area of slice perpendicular to the flow, and C is characteristic constant coefficient for the slice.

Hence,
Ahbdh/dt = qin – CAs(2gh)1/2,

To find, we can write Bernoulli's equation between Vacuum Degasser and Headbox. Suffix vd refers to vacuum degasser.

Pvd/ρ + W = (Phb + ρgh)/ρ + V2/2
 
V = {2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2

qin = AinV =  Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2

Hence the dynamic model is,

Ahbdh/dt = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 – CAs(2gh)1/2,

where the rate of stock height change in head box is related to the pressure in vacuum degasser and height.

We have to linearize the non linear dynamic model.

So that the effective model will be,

τdh'/dt = KpP'hb  + Khh',

So as we see the the response of the height of stock to variations in vacuum degasser pressure is first order lag. We don't know the dynamics of level sensor or transmitter, but we'll assume it's also first order lag.

Hence the effective system will be a second order. And hence it'll be oscillatory, and we propose the PID controller for level control by manipulating the speed of fan pump.

Using MATLAB control toobox and given values of the parameters in the problem, we approximately find the following controller parameter settings.

    Kc = 9.6, τI = 2.3 min, τD = 3.5 min.

Similarly, a propotional integral controller is proposed for pressure control in head box.

The pressure in the head box is related to in flow of air, which is controlled by PI controller.
The air is available at pressure of 300 kPa.

dPhb/dt = f(Qin), where is the inlet flow rate of air.

This will be pure capacitive system, hence we propose PI controller.

We find the controller parameters for this,

Kc = 14.5, τI = 4.5 min.

   Related Questions in Mechanical Engineering

  • Q : Deareator In Thermal Power Plant, Why

    In Thermal Power Plant, Why Deareator is placed at the Height?

  • Q : MECHANICAL ENGINEERING DESIGN KINDLY

    KINDLY SEND ME MATERIAL ON "MULTISTAGE SPUR GEAR DESIGN OPTIMISATION USING RAY DIAGRAMS"

  • Q : Life expectancy in Product design

    Life expectancy: This part of the specification will state how long the product should remain in working order provided the customer gives reasonable care and maintenance. Also take into account technological advances and ongoing improvements that wou

  • Q : What is wrap-around Wrap-around : The

    Wrap-around: The main aim of a wrap-a-round is to make a straight line about a pipe to help in cutting the pipe to its appropriate length. It is employed mostly as a straight edge or a template.   

  • Q : Cavitation elimination by Pump How

    How Cavitation is eliminated by the Pump?

  • Q : Problem on discharge head loss Water is

    Water is draining from the tank A to tank B. The elevation difference among the two tanks is 10 m. The pipe joining the two tanks has a sudden-expansion section as shown below. The cross-sectional area of the pipe from A is 8 cm2, and the area of the pipe f

  • Q : Difference between projectile motion

    Difference between projectile motion and rocket motion:A projectile has no motor or rocket on it, therefore all of its momentum is provided to it as it is launched. An illustration of a projectile would be pen which you throw across a room.

  • Q : Modal Combination Rules What are the

    What are the Modal Combination Rules in order to determine the peak value of the total response?

  • Q : Problem on steam turbine 1) A steam

    1) A steam turbine takes in saturated steam at 300oc and outputs steam at 4 bar. When the efficiency of the turbine is 65%, Evaluate: a.  The final composition (vapor vs. liquid) of outgoing steam.b.  The

  • Q : Causes and consequences of dynamic

    Discuss the causes and consequences of dynamic loading on structures based on two real examples. Support your discussion with proper diagrams or sketches. Your discussion shall include the time and location of the event, type and source of dynamic loa