Dynamic model for the paper machine headbox
Explain and derive the Dynamic model for the paper machine headbox?
Expert
We'll first develop a dynamic model for the paper machine headbox.A stock balance around the headbox. A suffix hb refers to the head box. Accumulation = Input – Outputdmhb/dt = ρqin – ρqoutNow ρ, is the stock density, but since the consistancy is 0.5% only, ρ = ρw = Water densityd(ρVhb)/dt = ρqin – ρqoutdVhb/dt = qin – qoutAhbdh/dt = qin – qoutwhere, Ahb, is the c/s area of header and assumed to be constant. qout, is the flow out of the header, and is only through slice, and can be written as, CAs(2gh)1/2, where As, is the cross sectional area of slice perpendicular to the flow, and C is characteristic constant coefficient for the slice.Hence, Ahbdh/dt = qin – CAs(2gh)1/2,To find, we can write Bernoulli's equation between Vacuum Degasser and Headbox. Suffix vd refers to vacuum degasser. Pvd/ρ + W = (Phb + ρgh)/ρ + V2/2 V = {2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 qin = AinV = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2Hence the dynamic model is, Ahbdh/dt = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 – CAs(2gh)1/2,where the rate of stock height change in head box is related to the pressure in vacuum degasser and height. We have to linearize the non linear dynamic model. So that the effective model will be,τdh'/dt = KpP'hb + Khh',So as we see the the response of the height of stock to variations in vacuum degasser pressure is first order lag. We don't know the dynamics of level sensor or transmitter, but we'll assume it's also first order lag. Hence the effective system will be a second order. And hence it'll be oscillatory, and we propose the PID controller for level control by manipulating the speed of fan pump. Using MATLAB control toobox and given values of the parameters in the problem, we approximately find the following controller parameter settings. Kc = 9.6, τI = 2.3 min, τD = 3.5 min.Similarly, a propotional integral controller is proposed for pressure control in head box.The pressure in the head box is related to in flow of air, which is controlled by PI controller. The air is available at pressure of 300 kPa. dPhb/dt = f(Qin), where is the inlet flow rate of air. This will be pure capacitive system, hence we propose PI controller. We find the controller parameters for this, Kc = 14.5, τI = 4.5 min.
Water flows at 40 m/s from the jet of area of cross-section of 0.008 m2 on to a flat plate as shown in the figure. Determine the force F normal to the plate, and also the flow rates out of the plate. Q : Problem on Ideal gas process A) Air at A) Air at 4MPa and 3000C enters a will insulated turbine operating at steady state with negligible velocity. The air expands to an exit pressure of 100KPa. The exit velocity and temperature are 90 m/s and 1000C respectively. The diameter of the e
A) Air at 4MPa and 3000C enters a will insulated turbine operating at steady state with negligible velocity. The air expands to an exit pressure of 100KPa. The exit velocity and temperature are 90 m/s and 1000C respectively. The diameter of the e
Except the lubrication, explain the other two functions of the lubricating oil in some of the turbines?
Describe all the laws of the Thermodynamics?
Explain phenomenon to measure the Temperature in Wet Bulb Thermometer?
What is the main aim of an airspeed indicator in aircraft?
Specify how the Bearing number ti Diameter of the inner and outer can be calculated?
Explain advantages and disadvantages of using the LPG in Car?
From Bernoulli's equation we know that presure head + velocity head at inlet and outlet header is same. If so what is ' W' then in the equation ?
Explain difference between the P11 and P12 Pipes?
18,76,764
1949510 Asked
3,689
Active Tutors
1428762
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!