--%>

Dynamic model for the paper machine headbox

Explain and derive the Dynamic model for the paper machine headbox?

E

Expert

Verified

We'll first develop a dynamic model for the paper machine headbox.

A stock balance around the headbox. A suffix hb refers to the head box.

Accumulation = Input – Output

dmhb/dt = ρqin – ρqout

Now ρ, is the stock density, but since the consistancy is 0.5% only,  ρ = ρw = Water density

d(ρVhb)/dt = ρqin – ρqout

dVhb/dt = qin – qout

Ahbdh/dt = qin – qout

where, Ahb, is the c/s area of header and assumed to be constant.

qout, is the flow out of the header, and is only through slice, and can be written as, CAs(2gh)1/2, where As, is the cross sectional area of slice perpendicular to the flow, and C is characteristic constant coefficient for the slice.

Hence,
Ahbdh/dt = qin – CAs(2gh)1/2,

To find, we can write Bernoulli's equation between Vacuum Degasser and Headbox. Suffix vd refers to vacuum degasser.

Pvd/ρ + W = (Phb + ρgh)/ρ + V2/2
 
V = {2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2

qin = AinV =  Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2

Hence the dynamic model is,

Ahbdh/dt = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 – CAs(2gh)1/2,

where the rate of stock height change in head box is related to the pressure in vacuum degasser and height.

We have to linearize the non linear dynamic model.

So that the effective model will be,

τdh'/dt = KpP'hb  + Khh',

So as we see the the response of the height of stock to variations in vacuum degasser pressure is first order lag. We don't know the dynamics of level sensor or transmitter, but we'll assume it's also first order lag.

Hence the effective system will be a second order. And hence it'll be oscillatory, and we propose the PID controller for level control by manipulating the speed of fan pump.

Using MATLAB control toobox and given values of the parameters in the problem, we approximately find the following controller parameter settings.

    Kc = 9.6, τI = 2.3 min, τD = 3.5 min.

Similarly, a propotional integral controller is proposed for pressure control in head box.

The pressure in the head box is related to in flow of air, which is controlled by PI controller.
The air is available at pressure of 300 kPa.

dPhb/dt = f(Qin), where is the inlet flow rate of air.

This will be pure capacitive system, hence we propose PI controller.

We find the controller parameters for this,

Kc = 14.5, τI = 4.5 min.

   Related Questions in Mechanical Engineering

  • Q : Problem on Ideal gas process A) Air at

    A) Air at 4MPa and 3000C enters a will insulated turbine operating at steady state with negligible velocity. The air expands to an exit pressure of 100KPa. The exit velocity and temperature are 90 m/s and 1000C respectively. The diameter of the e

  • Q : Advantages and disadvantages of using

    Explain advantages and disadvantages of using the LPG in Car?

  • Q : Servo drive What do you mean by Servo

    What do you mean by Servo drive and how mechatronic integration approach is improved by it.

  • Q : Arena Are you able to assist with these

    Are you able to assist with these two assignments in Arena simulation below? You can use the Basic Process instead of Blocks and Elements. An office of state license bureau has two types of arrivals. Individuals interested in purchasing new plates are characterized to have inter-arrival times dis

  • Q : Mechanical Systems Reliability -

    Mechanical Systems Reliability, MP3701 Your assignment must be submitted electronically via eLe

  • Q : To designe pump how to design e gear

    how to design e gear pump. show the process.

  • Q : Safety in Product design specification

    Safety: The specifications should state the possible abuse and misuse the product might be subjected to. Warning labels and instructions on safe operation of the product should be given. The designer can be held accountable for any accidents that migh

  • Q : Benefits of gear drive Benefits of gear

    Benefits of gear drive: In general, gear drive is helpful for power transmission among two shafts, which are close to each other (at most at 1m distance). Additionally, it has maximum efficiency while transmitting power. It is resilient as compare to

  • Q : Aim of an airspeed indicator in aircraft

    What is the main aim of an airspeed indicator in aircraft?

  • Q : Define feasibility study Feasibility

    Feasibility study: In order to take wise investments in a market-place experiencing rising stages of risk, companies are turning to feasibility studies to find out if they must propose new products, services or commence a new business endeavor. The ma