--%>

Dynamic model for the paper machine headbox

Explain and derive the Dynamic model for the paper machine headbox?

E

Expert

Verified

We'll first develop a dynamic model for the paper machine headbox.

A stock balance around the headbox. A suffix hb refers to the head box.

Accumulation = Input – Output

dmhb/dt = ρqin – ρqout

Now ρ, is the stock density, but since the consistancy is 0.5% only,  ρ = ρw = Water density

d(ρVhb)/dt = ρqin – ρqout

dVhb/dt = qin – qout

Ahbdh/dt = qin – qout

where, Ahb, is the c/s area of header and assumed to be constant.

qout, is the flow out of the header, and is only through slice, and can be written as, CAs(2gh)1/2, where As, is the cross sectional area of slice perpendicular to the flow, and C is characteristic constant coefficient for the slice.

Hence,
Ahbdh/dt = qin – CAs(2gh)1/2,

To find, we can write Bernoulli's equation between Vacuum Degasser and Headbox. Suffix vd refers to vacuum degasser.

Pvd/ρ + W = (Phb + ρgh)/ρ + V2/2
 
V = {2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2

qin = AinV =  Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2

Hence the dynamic model is,

Ahbdh/dt = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 – CAs(2gh)1/2,

where the rate of stock height change in head box is related to the pressure in vacuum degasser and height.

We have to linearize the non linear dynamic model.

So that the effective model will be,

τdh'/dt = KpP'hb  + Khh',

So as we see the the response of the height of stock to variations in vacuum degasser pressure is first order lag. We don't know the dynamics of level sensor or transmitter, but we'll assume it's also first order lag.

Hence the effective system will be a second order. And hence it'll be oscillatory, and we propose the PID controller for level control by manipulating the speed of fan pump.

Using MATLAB control toobox and given values of the parameters in the problem, we approximately find the following controller parameter settings.

    Kc = 9.6, τI = 2.3 min, τD = 3.5 min.

Similarly, a propotional integral controller is proposed for pressure control in head box.

The pressure in the head box is related to in flow of air, which is controlled by PI controller.
The air is available at pressure of 300 kPa.

dPhb/dt = f(Qin), where is the inlet flow rate of air.

This will be pure capacitive system, hence we propose PI controller.

We find the controller parameters for this,

Kc = 14.5, τI = 4.5 min.

   Related Questions in Mechanical Engineering

  • Q : Poissons Ratio Out of

    Out of Rubber/Steel/Wood, which have higher Poissons Ratio?

  • Q : Gasoline in Diesel Engine If the

    If the gasoline is used in the Diesel engine explain whether the Diesel engine will work?

  • Q : Problem related to the value of the

    Water flows via a pipe of about 300 mm diameter at the rate of 66 L/s. Evaluate the value of the manometer reading, ‘h’. The Specific gravity of manometer liquid is taken as 0.8.  

  • Q : Problem on degree of freedom Draw a

    Draw a frequency-response curves for a damped single degree of freedom system subjected to a harmonic excitation under three different damping ratios. System has a natural frequency of ωn as the forcing frequency of the excitation is ω. Describe

  • Q : Problem on damping coefficient Vertical

    Vertical suspension system of a car can be modeled as single degree of the freedom system. Consider that the car with mass m consists of four shock absorbers with equal stiffness and damping of k and c, corresspondingly: (a) Due to

  • Q : Calculate the surface area available

    You are working in a company that has developed a process to produce DNA vaccines from E.coli. After the fermentation step a lysis step is used to release the DNA from the cells resulting in a sticky mixture. You find that an aggressive cleaning solution heated to 80°C is required to

  • Q : MECHANICAL ENGINEERING DESIGN KINDLY

    KINDLY SEND ME MATERIAL ON "MULTISTAGE SPUR GEAR DESIGN OPTIMISATION USING RAY DIAGRAMS"

  • Q : What is wrap-around Wrap-around : The

    Wrap-around: The main aim of a wrap-a-round is to make a straight line about a pipe to help in cutting the pipe to its appropriate length. It is employed mostly as a straight edge or a template.   

  • Q : Petroleum technology theories for the

    theories for the origin of petroleum, methods for detection of petroleum deposits, fractional distillation

  • Q : Difference between projectile motion

    Difference between projectile motion and rocket motion:A projectile has no motor or rocket on it, therefore all of its momentum is provided to it as it is launched. An illustration of a projectile would be pen which you throw across a room.