Dynamic model for the paper machine headbox
Explain and derive the Dynamic model for the paper machine headbox?
Expert
We'll first develop a dynamic model for the paper machine headbox.A stock balance around the headbox. A suffix hb refers to the head box. Accumulation = Input – Outputdmhb/dt = ρqin – ρqoutNow ρ, is the stock density, but since the consistancy is 0.5% only, ρ = ρw = Water densityd(ρVhb)/dt = ρqin – ρqoutdVhb/dt = qin – qoutAhbdh/dt = qin – qoutwhere, Ahb, is the c/s area of header and assumed to be constant. qout, is the flow out of the header, and is only through slice, and can be written as, CAs(2gh)1/2, where As, is the cross sectional area of slice perpendicular to the flow, and C is characteristic constant coefficient for the slice.Hence, Ahbdh/dt = qin – CAs(2gh)1/2,To find, we can write Bernoulli's equation between Vacuum Degasser and Headbox. Suffix vd refers to vacuum degasser. Pvd/ρ + W = (Phb + ρgh)/ρ + V2/2 V = {2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 qin = AinV = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2Hence the dynamic model is, Ahbdh/dt = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 – CAs(2gh)1/2,where the rate of stock height change in head box is related to the pressure in vacuum degasser and height. We have to linearize the non linear dynamic model. So that the effective model will be,τdh'/dt = KpP'hb + Khh',So as we see the the response of the height of stock to variations in vacuum degasser pressure is first order lag. We don't know the dynamics of level sensor or transmitter, but we'll assume it's also first order lag. Hence the effective system will be a second order. And hence it'll be oscillatory, and we propose the PID controller for level control by manipulating the speed of fan pump. Using MATLAB control toobox and given values of the parameters in the problem, we approximately find the following controller parameter settings. Kc = 9.6, τI = 2.3 min, τD = 3.5 min.Similarly, a propotional integral controller is proposed for pressure control in head box.The pressure in the head box is related to in flow of air, which is controlled by PI controller. The air is available at pressure of 300 kPa. dPhb/dt = f(Qin), where is the inlet flow rate of air. This will be pure capacitive system, hence we propose PI controller. We find the controller parameters for this, Kc = 14.5, τI = 4.5 min.
From Bernoulli's equation we know that presure head + velocity head at inlet and outlet header is same. If so what is ' W' then in the equation ?
For safe turbine operation how many governors are generally required and Why?
Out of Centrifugal Pump or the Reciprocating Pump, which pump is more efficient?
what are different alternate sources of energy
What do you mean by Servo drive and how mechatronic integration approach is improved by it.
Explain the term hard links?
Product Design Specification: Once the basic idea for a product has been made, the next step is to create a product design specification, or PDS. This document must be as comprehensive and as detailed as possible as it forms the basis of all the work
Are you able to assist with these two assignments in Arena simulation below? You can use the Basic Process instead of Blocks and Elements.An office of state license bureau has two types of arrivals. Individuals interested in purchasing new plates are chara
a vaccume guage connected to chamber 40kpa at location where atmospheri pressure is100kpa .determine absolute pressure
Air at 20 m/s, 260 K, 75 kPa with 5 kg/s flows into a jet engine and it flows out at 500 m/s, 800 K, 75 kPa. What is the change (power) in flow of kinetic energy?
18,76,764
1939663 Asked
3,689
Active Tutors
1423471
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!