--%>

Donnan Membrane Equilibria

The electric charge acquired by macromolecules affects the equilibrium set up across a semipermeable membrane.

Laboratory studies of macromolecule solutions as in osmotic pressure and dialysis studies confine the macromolecules to one compartment while allowing passage of small ions or solvent in or out compartment. Much of the transport occurring in cells and cell compartments in living systems can be similarly described. In all such cases, the equilibrium state that would be reached as a result of the net transport of the small ions can be markedly affected if the macromolecule carries a charge, as is generally the case.

Except at the isoionic pH, proteins and nucleic acids carry a charge as a result of a net gain or loss of protons. Additional charges are acquired by the binding of other species, e.g. the binding of Mg2+ ions by phosphate groups. Thus, macromolecules in laboratory or biological systems generally carry a charge. The overall electrical neutrality of the solution results from a corresponding opposite charge contributed by ions, called counterions, included in the remaining ionic make up of the solution.

Suppose such a macromolecule or, specifically, a protein solution is separated from pure water by a semipermeable membrane that allows passage of small ions but prohibits the passage of protein molecules. Such a situation could arise in an osmotic pressure study or in the dialysis of the protein solution. Suppose the protein carries a net negative charge and that Na+ ions are the counterions. The Na+ ions will tend to diffuse to the low concentration region of initially pure water. Electrical neutrality would be lost and this process prevented if it were not for the dissociation of water. This occurs, and H+ ions tend to accumulate on the proteins side of the membrane while the corresponding OH- ions accumulate, along with the buffered, pH charges will occur to upper the osmotic pressure or dialysis experiment.

In such ways are led to deal with the equilibrium between protein solutions, which are often themselves buffered, and buffer solutions. The complication arise can be illustrated by considering the simplest situation of the protein-sodium-ion solution separated by a semipermeable membrane from a sodium chloride solution.

Suppose the proteins species P carries a negative charge of -z. the neutrality of the solution is achieved by the presence of z positive charges, Na+ ions for example, for each protein concentration is cP, as the initial Na+ concentration in the protein compartment is zeP.

Species concentration in a Donnan-membrane equilibrium study:

368_donnan membrane.png 



Rearrangement leads to x, the concentration of chloride that develops in the protein compartment:

At large salt concentrations, the effect of the protein is overwhelmed and x = 1/2cs. The two compartments achieve equal salt concentrations. At large a protein concentration, however, the passage of salt into the protein compartment is prevented, even though this rejection of the chloride ion by a solution that contains none of that ion.

Donnan-membrane equilibrium calculated from the above equation for z = 1:

2230_donnan membrane1.png 

The effects of various concentrations of protein and electrolyte are shown in the table. Only at high concentration relative to the protein concentration is the effect of the confined charged protein small. Therefore many studies of proteins or other polyelectrolytes in solution are made at high electrolyte concentration and at a pH near the isoionic point.  

   Related Questions in Chemistry

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M

  • Q : Degree of dissociation The degree of

    The degree of dissociation of Ca(No3)2 in a dilute aqueous solution containing 14g of the salt per 200g of water 100oc is 70 percent. If the vapor pressure of water at 100oc is 760 cm. Calculate the vapor pr

  • Q : Dipole moment of chloro-octane Describe

    Describe the dipole moment of chloro-octane in brief?

  • Q : Advantages of doing your own chemistry

    What are the advantages of doing your own chemistry assignments? State your comment?

  • Q : Describe Transformation Matrices. Each

    Each symmetry operation can be represented by a transformation matrix.You have seen what happens when a molecule is subjected to the symmetry operation that corresponds to any of the symmetry elements of the point group to which the molecule belongs. The m

  • Q : Molecular crystals Among the below

    Among the below shown which crystal will be soft and have low melting point: (a) Covalent  (b) Ionic  (c) Metallic  (d) MolecularAnswer: (d) Molecular crystals are soft and have low melting point.

  • Q : Amines arrange in decreasing order of

    arrange in decreasing order of basicity pi pyridine,pyridine,pyrrole, morphine

  • Q : Chem Explain how dissolving the Group

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : HCl polarity Illustrate HCl is polar or

    Illustrate HCl is polar or non-polar?

  • Q : Describe Thermodynamics Properties The

    The free energy property leads to convenient expressions for the volume and pressure dependence of internal energy, enthalpy and the heat capacities.All the properties of a chemical system, a sample of a substance, or a mixture of substances have some fixe