--%>

Discrete and continuous data

Distinguish between discrete and continuous data in brief.

E

Expert

Verified

Discrete data are whole numbers. They take on particular values and no values in between. Data like the number of homes one has could be one or two as an example of discrete data as one could not own one and a half homes.

Continuous data is a random variable and can take on any value on a range. An example of temperature could be 30.23 degrees.

   Related Questions in Advanced Statistics

  • Q : Problem on layout A manufacturing

    A manufacturing facility consists of five departments, 1, 2, 3, 4, and 5. It produces four components having manufacturing product routings and production volumes indicated below.   1. Generate the from-to matrix and the interaction matrix. Use a

  • Q : Probability and Statistics

    Instructions: Do your work on this question and answer sheet. Please print or write legibly, and, as always, be complete but succinct. Record your answer and your supporting work in the designated space. Explain your method of solution and be sure to label clearly any

  • Q : Calculate confidence interval A nurse

    A nurse anesthetist was experimenting with the use of nitronox as an anesthetic in the treatment of children's fractures of the arm.  She treated 50 children and found that the mean treatment time (in minutes) was 26.26 minutes with a sample standard deviation of

  • Q : Use the law of iterated expectation to

    Suppose we have a stick of length L. We break it once at some point X _

    Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Conclusion using p-value and critical

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evid

  • Q : Probability of winning game Monte Carlo

    Monte Carlo Simulation for Determining Probabilities 1. Determining the probability of winning at the game of craps is difficult to solve analytically. We will assume you are playing the `Pass Line.'  So here is how the game is played: The shooter rolls a pair of

  • Q : Grouped Frequency Distributions Grouped

    Grouped Frequency Distributions: Guidelines for classes: A) There must be between 5 to 20 classes. B) The class width must be an odd number. This will assure that the class mid-points are integers rather than decimals. C) The classes should be mutually exclusive. This signifies that no data valu

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d