--%>

Diffusion Molecular View

When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.

To see how the experimental coefficients can be treated to properties of the system and particularly of the solute macromolecules we take a molecular view of the diffusion process. Consider across a distance interval dx over which the concentration changes from c to c-dc. The force that drives the molecules to the ore dilute region can be related to the difference in the, molar free energy of the solute at concentration c and at concentration c-dc. If deal behaviour is assumed, the free energy differences per molecule is

Gc - dc - Gc = RT/N In (c -dc)/c 

Or

dG = RT/N In (1 - dc/c) - RT/N dc/c  where the relation In (1 - y) = -y for small y has been used.

This free energy difference corresponds to the mechanical energy needed to transfer one macromolecule across the distance dx. This energy can therefore be written as a force times the distance dx. Thud dG = driving force × dx, or

Driving force = dG/dx = RT/N 1/c dc/dx

A frictional force sets in and balances this diffusion force when some constant velocity is reached. The frictional force exerted by a viscous solvent fluid of viscosity η has been derived for a macroscopic sphere of radius r by G. G strokes as 

Frictional force = 6∏rη dx/dt

It appears suitable to apply this expression to the motion of reasonably spherical macromolecules. The diffusion velocity increases, therefore, until the force balances that equation. Then

6∏rη dx/dt = - RT/N 1/c dc/dx 

Or

cdx/dt = - RT/(6∏rη) dc/dx

Since c implies a mass per unit volume measure of concentrations, the product c dx/dt can be interrupted as the rate with which the diffusing substance moves through a unit cross section at x. this follows suggests, from the fact that dx/dt, the average diffusion velocity in the x direction, is the distance the diffusing molecules travel per unit time. Thus all the molecules within a distance dx/dt of a cross section will pass cross section in unit time. These molecules are in a volume equal to dx/dt times the cross section area. The mass of these molecules is the product of this volume and the concentration expressed as mass per unit volume. Thus c dx/dt is the amount per unit time, i.e. the rate with which the solute passes through the cross section. We can write now

D ∂c/∂x = - RT/(6∏rη) ∂c/∂x

This leads to the identification

D = RT/(6∏rη) 

And 6∏rη = RT/DN

Measurements of D and η could therefore lead to a value of the radius r for the macromolecule. Such a procedure is a little unsatisfactory. Molecules do not necessarily obey Strokes' law, even if they are spherical. Furthermore, macromolecules will generally be solvated and in moving through the solution will to some extent vary along this salvation layer. Equation is important however, in that it provides a way of determining the effective value of the group of terms 6∏rη for a solute characterized by molecules with radius r and a solvent characterized by viscosity η

   Related Questions in Chemistry

  • Q : Define the term oxidizing agent Briefly

    Briefly define the term oxidizing agent?

  • Q : Molecular Diameters The excluded volume

    The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values

  • Q : How to calculate solutions molar

    The contribution of an electrolyte, or an ion electrolyte, is reported as the molar of a conductance. The definition of the molar conductance is based on the following conductivity cell in which the electrodes are 1 m apart and of sufficient area that th

  • Q : Define alum Illustrate alum?

    Illustrate alum?

  • Q : Solubility product On passing H 2 S gas

    On passing H2S gas through a particular solution of Cu+ and Zn+2 ions, first CuS is precipitated because : (a)Solubility product of CuS is equal to the ionic product of ZnS (b) Solubility product of CuS is equal to the solubility product

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.

  • Q : P block why BiF3 is ionic whereas other

    why BiF3 is ionic whereas other trihalides are covalent in nature?

  • Q : Real vapour pressure Choose the right

    Choose the right answer from following. The pressure under which liquid and vapour can coexist at equilibrium is called the : (a) Limiting vapour pressure (b) Real vapour pressure (c) Normal vapour pressure (d) Saturated vapour pressure

  • Q : Nuclear Magnetic Resonance The nuclear

    The nuclear states produced by a magnetic field are studied in nuclear magnetic resonance spectroscopy.The frequency of the radiation that corresponds to the nuclear magnetic energy level spacings and the weakness of the radiation absorption that must be e

  • Q : Molar and Volumetric flow rate problem

    Cyclohexane (C6H12) is produced by mixing Benzene and hydrogen. A process including a reactor, separator, and recycle stream is used to produce Cyclohexane. The fresh feed contains 260L/min C6H6 with 950 L/min of H2