--%>

Describe Wien displacement law

Wien displacement law: For a blackbody, the product result of the wavelength corresponding to the maximum radiances and the thermodynamic temperature is constant, then the Wien displacement law constant. As an outcome, as the temperature increases, the maximum of the radiant energy moves toward the shorter wavelength (that is higher frequency and energy) end of the spectrum.

   Related Questions in Physics

  • Q : Explain Null experiment Null

    Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result),

  • Q : Define Atwood's machine Atwood's

    Atwood's machine: The weight-and-pulley system devised to compute the acceleration due to gravity at Earth's surface by computing the total acceleration of a set of weights of identified mass about a frictionless pulley.

  • Q : What is Permeability of free space or

    Permeability of free space: magnetic constant: mu_0: The ratio of the magnetic flux density in the substance to the external field strength for vacuum. It is equivalent to 4 pi x 10-7 H/m.

  • Q : What is Farad or SI unit of capacitance

    What is Farad or SI unit of capacitance? Farad: F (after M. Faraday, 1791-1867): The derived SI unit of the capacitance stated as the capacitance in a capacitor that, when charged to 1 C, contains

  • Q : Atomic model which the Erwin

    Briefly state the atomic model which the Erwin Schrodinger creates?

  • Q : Describe the applications of the nmr

    Briefly describe the applications of the nmr spectroscopy?

  • Q : Water drain contradict problem Does

    Does water drain contradict clockwise in the northern hemisphere and clockwise in the southern hemi-sphere? Briefly explain it.

  • Q : Explain Uncertainty principle

    Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be r

  • Q : Calculate power consumed : A voltage v

    : A voltage v = 150 + j180 is applied across an impedance and the current flowing is I = 5 - j4 find ? A, impedance . B, resistance. C, reactance. D, power consumed. 

  • Q : Define Keplers 1-2-3 law Kepler's 1-2-3

    Kepler's 1-2-3 law: The other formulation of Kepler's third law, that relates to the mass m of the primary to a secondary's angular velocity omega and semi major axis a: m o = omega2 a3