--%>

What is Ideal Mixtures

Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases.

Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or solution, can be obtained by beginning with Dalton's law of partial pressures. That law, as seen in the pressure needed to confine a mixture of gases to a container is equal to the sum of the pressures that would be needed to confine the gas components separately to the same container.

The formation of Dalton's law binary mixture can be pictured by the process suggested in the fig. we begin with the gas sample containing of the separate components, each at pressure P. the mixing process consists of the expansion of each component to fill the entire container.

Suppose there are two containers nA mol of A and nB mol of B. the gas sample, both before and after mixing, has a volume V, and pressure to confine the gas to this volume is P. before mixing, the components are both occupy the total volume, and the pressures, or partial pressures, needed to confine them are also proportion to the number of moles. The relations that are implied are shown in fig.

The exponent of each component in this ideal gas mixture process occurs without regard to the presence of the other component. The change that occurs in the mixing is the sum of the changes experienced by each component.

From the relation between free energy and pressure for an ideal gas so that we have:

GA (in mixture) - GA (pure) = nRT in xB

G(in mixture) - GB (pure) = nRT in xB  


Ideal solutions: the free energy result of the above equation was developed by piecing together features of ideal behavior. In a more elegant procedure, adherence to the equation and to the consequences of this equation is used as the definition of ideal solution behavior. The entropy and free energy changes for the formation of 1 mol of an ideal gas solution are shown in the fig. and along with enthalpy it is accurate. Gas mixtures, except a high pressures or low temperatures, confirm to these ideal mixture characteristics. In what follows we treat gas mixtures as ideal.

Liquid mixtures, i.e. solutions, generally do not; behave according to these ideal mixing expressions. The volume of the solution is not always equal to the sum of the volume of the separate components. In the formation of a solution energy must often be exchanged with the thermal surroundings to maintain a constant temperature. Only for a few solutions are the free energy and entropy changes given by the ideal solution expressions. 

Entropy and free energy change at 25°C for formation of 1 mol of an ideal binary solution:

Mole fraction (xA) Mole fraction (xB) xA R In xA, Jk-1mol-1 xB R In xB, Jk-1mol-1 ΔSmix, JK-1mol-1 T ΔSmix, J mol-1 ΔGmix, J mol-1
1 0 0 0 0 0 -0
0.9 0.1 -0.79 -1.91 2.70 805 -805
0.8 0.2 -1.48 -2.68 4.16 1240 -1240
0.7 0.3 -2.08 -3.00 5.08 1510 -1510
0.6 0.4 -2.55 -3.05 5.60 1670 -1670
0.5 0.5 -2.88 -2.88 5.76 1720 -1720
0.4 0.6 -3.05 -2.55 5.60 1670 -1670
0.3 0.7 -3.00 -2.08 5.08 1510 -1510
0.2 0.8 -2.68 -1.48 4.16 1240 -1240
0.1 0.9 -1.91 -0.79 2.70 805 -805
0 0 0 0 0 0 -0

   Related Questions in Chemistry

  • Q : Questuion associated with colligative

    Provide solution of this question. Which of the following is a colligative property: (a) Surface tension (b) Viscosity (c) Osmotic pressure (d) Optical rotation

  • Q : Define Virial Equation The constant of

    The constant of vander Waal's equation can be related to the coefficients of the virial equation.  Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us

  • Q : Problem based on molarity Select the

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Number of electrons in the benzene

    Describe the number of electrons in the benzene? Write a short note on it?

  • Q : Quastion of finding vapour pressure

    Vapour pressure of CCl425Degree C at is 143mm of Hg0.5gm of a non-volatile solute (mol. wt. = 65) is dissolved in 100ml CCl4 .Find the vapour pressure of the solution (Density of CCl4 = = 1.58g /cm2): (a)141.43mm (b)

  • Q : What is laser and explain its working?

    Laser action relies on a non-Boltzmann population inversion formed by the absorption of radiation and vibrational deactivation that forms a long lived excited electronic state. An excited state molecule can move to a lower energy state or return to the

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

  • Q : Which is largest planet in our solar

    which is largest planet in our solar system