--%>

What is Ideal Mixtures

Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases.

Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or solution, can be obtained by beginning with Dalton's law of partial pressures. That law, as seen in the pressure needed to confine a mixture of gases to a container is equal to the sum of the pressures that would be needed to confine the gas components separately to the same container.

The formation of Dalton's law binary mixture can be pictured by the process suggested in the fig. we begin with the gas sample containing of the separate components, each at pressure P. the mixing process consists of the expansion of each component to fill the entire container.

Suppose there are two containers nA mol of A and nB mol of B. the gas sample, both before and after mixing, has a volume V, and pressure to confine the gas to this volume is P. before mixing, the components are both occupy the total volume, and the pressures, or partial pressures, needed to confine them are also proportion to the number of moles. The relations that are implied are shown in fig.

The exponent of each component in this ideal gas mixture process occurs without regard to the presence of the other component. The change that occurs in the mixing is the sum of the changes experienced by each component.

From the relation between free energy and pressure for an ideal gas so that we have:

GA (in mixture) - GA (pure) = nRT in xB

G(in mixture) - GB (pure) = nRT in xB  


Ideal solutions: the free energy result of the above equation was developed by piecing together features of ideal behavior. In a more elegant procedure, adherence to the equation and to the consequences of this equation is used as the definition of ideal solution behavior. The entropy and free energy changes for the formation of 1 mol of an ideal gas solution are shown in the fig. and along with enthalpy it is accurate. Gas mixtures, except a high pressures or low temperatures, confirm to these ideal mixture characteristics. In what follows we treat gas mixtures as ideal.

Liquid mixtures, i.e. solutions, generally do not; behave according to these ideal mixing expressions. The volume of the solution is not always equal to the sum of the volume of the separate components. In the formation of a solution energy must often be exchanged with the thermal surroundings to maintain a constant temperature. Only for a few solutions are the free energy and entropy changes given by the ideal solution expressions. 

Entropy and free energy change at 25°C for formation of 1 mol of an ideal binary solution:

Mole fraction (xA) Mole fraction (xB) xA R In xA, Jk-1mol-1 xB R In xB, Jk-1mol-1 ΔSmix, JK-1mol-1 T ΔSmix, J mol-1 ΔGmix, J mol-1
1 0 0 0 0 0 -0
0.9 0.1 -0.79 -1.91 2.70 805 -805
0.8 0.2 -1.48 -2.68 4.16 1240 -1240
0.7 0.3 -2.08 -3.00 5.08 1510 -1510
0.6 0.4 -2.55 -3.05 5.60 1670 -1670
0.5 0.5 -2.88 -2.88 5.76 1720 -1720
0.4 0.6 -3.05 -2.55 5.60 1670 -1670
0.3 0.7 -3.00 -2.08 5.08 1510 -1510
0.2 0.8 -2.68 -1.48 4.16 1240 -1240
0.1 0.9 -1.91 -0.79 2.70 805 -805
0 0 0 0 0 0 -0

   Related Questions in Chemistry

  • Q : Question based on strength of solution

    Help me to go through this problem. On dissolving 1 mole of each of the following acids in 1 litre water, the acid which does not give a solution of strength 1N is: (a) HCl (b) Perchloric acid (c) HNO3 (d) Phosphoric acid

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : Describe various systems for

    Common system According to this system, the individual members are named according to alkyl groups att

  • Q : What are methods of phenol preparation

    Phenol was initially obtained by fractional distillation of coal

  • Q : Problem on Clausius equation of state

    If a gas can be described by the Clausius equation of state: P (V-b) = RT Where b is a constant, then:  (a) Obtain an expression for the residual vo

  • Q : Coagulation what is the meaning of

    what is the meaning of fourth power of valency of an active ion?

  • Q : Describe the properties of the

    Briefly describe the properties of the carbohydrates?

  • Q : Calculate PH value for a acetic acid 1.

    1. A solution of 0.100 M acetic acid is prepared. a) What is its pH value? b) If 20% of the initial acetic acid is converted to the acetate form by titration with NaOH, what is the resultant pH?

  • Q : Nuclear Magnetic Resonance The nuclear

    The nuclear states produced by a magnetic field are studied in nuclear magnetic resonance spectroscopy.The frequency of the radiation that corresponds to the nuclear magnetic energy level spacings and the weakness of the radiation absorption that must be e

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any