--%>

Describe First Order Rate Equation

The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation.

Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions for the dependence of the concentrations on time. We generally use the integrated rate equation that is obtained to deduce the order of a reaction.

A first order reaction is one for which, at a given temperature, the rate of the reaction depends only on the first power of the concentration of a single reacting species. If the concentrations of this species is represented by c (for solutions, the units of moles per litre are ordinarily used), and if the volume of the system remains essentially constant during the course of the reaction, the first order rate equation can be written

-dc/dt = kc

The rate of constant k is then a positive quantity and has the units of the reciprocal of time.

Integrated rate equation: the experimental results obtained in a study of the rate of a reaction are usually values of c or some related to c at various times. Such data can best be compared with the integrated form of the first order rate equation. If the concentration at time t = 0 is c0, and if at some later time t the concentration has fallen to c, the integration gives

481_First order reactions.png 

With -In (c/c0) = In (c0/c), the integration can be written as

In c0/c = kt

Sometimes a more convenient form is

In c = -kt + In c0

A reaction can therefore be said to be first order if a plot of In (c0/c) or In c versus t gives a straight line. If a straight line is obtained, the slope of the line can be used to give the value of the rate constant k. an alternative to this graphical procedure is the calculation of a value of kfrom the individual measurements of c at the various times t, for example. The reaction is classified as first order if all the data lead to essentially the same values for k, that is, if it is satisfies with k as a constant.

Example: the rate of conversion of tert-butyl bromide to tert-butyl alcohol, (CH3)3CBr + H2O 1598_First order reactions1.png (CH3)3COH + HBr, has been studied and some concentration-time results are found in table given below. Verify that the reaction is first order, and deduce the values of the rate constant at the two temperatures.

Solution: from the data at each temperature we calculate In (c0/c) values. Then the graphical display shows a plot of In (c0/c) versus t is constructed. The straight lines, each going through the origin show that at both temperatures the data conform to the integrated first order relation. The slopes give the values of the rate constants 

K = 0.00082 min-1 = 0.137 × 10-4 s-1 [25°C]    

K = 0.0142 min-1 = 2.37 × 10-4 s-1 [50°C]    


Concentration of tert butyl bromide as a function of time for the reaction (CH3)3CBr + H2O 1598_First order reactions1.png (CH3)3COH + HBr in a 10% water, 90% acetone solvent

At 25°C  At 50°C
Time, h (CH3)3CBr, Mol L-1 Time, min (CH3)3CBr, Mol L-1
0 0.1039 0 0.1056
3.15 0.0896 9 0.0961
6.20 0.0776 18 0.0856
10.0 0.0639 27 0.0767
13.5 0.0529 40 0.0645
18.3 0.0353 54 0.0536
26.0 0.0270 72 0.0432
30.8 0.0207 105 0.0270
37.3 0.0142 135 0.0174
43.8 0.0101 180 0.0089

   Related Questions in Chemistry

  • Q : Moles of HCl present in .70 L of a .33

    Detail the moles of HCl which are present in .70 L of a .33 M HCl solution?

  • Q : Strength of any solution Give me answer

    Give me answer of this question. A solution contains 1.2046 x 1024 hydrochloric acid molecules in one dm3 of the solution. The strength of the solution is: (a) 6 N (b) 2 N (c) 4 N (d) 8 N

  • Q : Illustrate the Lewis Dot Structure

    Illustrate the Lewis Dot Structure for the CH4O.

  • Q : Production of alcoholic drinks give all

    give all physical aspects in the production of alcohol

  • Q : What is depression in freezing point?

    Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure. The freezing point o

  • Q : Calculating weight of acid Give me

    Give me answer of this question. The formula weight of H2SO4 is 98. The weight of the acid in 400mi of solution is: (a)2.45g (b) 3.92g (c) 4.90g (d) 9.8g

  • Q : Explain structure basicity of amines.

    Basic character of amines is related to their structural arrangement. Basic strength of amines depends on the relative ease of formation of the corresponding cation by accepting a proton from the acid. Greater the stability of cation is, more is basic strength of amine.Alkyl a

  • Q : Problem on vapour pressure Choose the

    Choose the right answer from following. If P and P are the vapour pressure of a solvent and its solution respectively N1 and N2 and are the mole fractions of the solvent and solute respectively, then correct relation is: (a) P= PoN1 (b) P= Po N2 (c)P0= N2 (d)

  • Q : Precipitation problem On passing H 2 S 

    On passing H2S  gas through a solution of Cu+ and Zn+2 ions, CuS is precipitated first because: (i) Solubility product of CuS is equal to the ionic product of ZnS (ii) Solubility product of CuS is equal to the solubility product o

  • Q : Sugar solution The solution of sugar in

    The solution of sugar in water comprises: (i) Free atoms (ii) Free ions (iii) Free molecules (iv) Free atom and molecules. Choose the right answer from the above.