--%>

Describe Enzyme Catalyzed reactions with examples.

Many enzyme catalyzed reactions obeys a complex rate equation that can be written as the total quantity of enzyme and the whole amount of substrate in the reaction system.

Many rate equations that are more complex than first and second order equations and are encountered in chemical rate studies. Such rate equations can be illustrated by considering reactions that occur in biological systems, or at least are affected by enzymes occurring in such systems.

The impact of enzymes on the rate through which chemical reactions move toward their equilibrium position gives one of the most dramatic catalytic effects. Much of the current interest in the subject is centered on the details of the action between the enzyme, which is the catalyst, and the material, known as substrate, whose reaction it effects. It is significant to know that how an enzyme catalyzed reaction proceeds in time and how the catalytic action of the enzyme substrate pair is analysed from the measurement of the development of such reactions.

The experimental data for enzyme catalyzed reactions show a variety of forms that depend on the enzyme, the substrate, the temperature, the presence of interfering substances, and so forth. Many of the behaviors that are found can be looked on as variations from the ideal curve. It is such rate curves for which we now develop a rate equation in a form that is conviently related to the quantities measured in enzymes studies.

Inspection of the curve shows that at high substrate concentrations the rate of the reaction is independent of the substrate concentration. It is, the however, proportional to the total amount of the enzyme. At low substrate concentrations the rate, as shown by the initial straight line section of the curves, is proportional to the substrate concentration. The rate would be found to be proportional to the total enzyme concentration. These features also be found to be proportional by a rate of equation, where R denotes the rate of the reaction, of the form:

R = (const) [Etot ] [ S ] / const' + [S]

To anticipate the notion introduced when the mechanism of enzyme catalyzed reactions is dealt with, we introduce the symbols k2 and KM for the two constants and thus write the equation in the form:

R = k2 [Etot] [S]/const' + [S]

To anticipate the notion when the mechanism of enzyme catalyzed reactions is dealt with, we introduce the symbols k2 and KM for the two constants and thus write the rate equation in the form:

R = k2 [Etot] [S]/KM + [S]

Although the parameters k2 and KM could be determined so that a function corresponding to the experimental more convenient procedure can be found. The initial rate is often obtained by measuring [S] after a time t at which only a small fraction of the substance has been consumed. If[S0] is the initial substrate concentration, we can express the initial rate as [S0] - [S]/t. then it becomes:

[S0] - [S] = k2 [Etot] [S0]/KM + [S0] × t

The "constants" k2 [Etot] and KM can be evaluated from measurements of the initial rate of reaction. This rate, Rinit, is approximately [S0] - [S]/t, where [S] is the concentration after a small time interval t.

Values of Rinit can be obtained for various values of [S0]. A convenient procedure for obtaining the constants is based on the reciprocal of this equation. We write down:

1/Rinit = 1/k2 [Etot] + KM/k2[Etot] × 1/[S0]

Thus, if a plot of 1/Rinit versus 1/S0 gives a straight line, the intercept and slope can be used to obtain k2 [Etot] and KM/k2 [Etot]. From these quantities the value of KM can be calculated. Separation of the factors k2 and [Etot] requires studies of systems with various amounts of enzyme.

   Related Questions in Chemistry

  • Q : Normality of sulphuric acid Help me to

    Help me to go through this problem. Normality of sulphuric acid is: (a) 2N (b) 4N (c) N/2 (d) N/4

  • Q : Molecular substances what are the most

    what are the most important inorganic molecular substances for living beings?

  • Q : Problem on decomposition reaction

    Nitrogen tetroxide (melting point: -11.2°C, normal boiling point 21.15°C) decomposes into nitrogen dioxide according to the following reaction: N2O4(g) ↔ 2 NO2(g)<

  • Q : Molar concentration of hydrogen 20 g of

    20 g of hydrogen is present in 5 litre of vessel. Determine he molar concentration of hydrogen: (a) 4  (b) 1 (c) 3 (d) 2 Choose the right answer from above.

  • Q : Non-ideal Gases Fugacity The fugacity

    The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction 

  • Q : Film Mass Transport Sulfur trioxide

    Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst: SO2 + ½ O2 à SO3 The catalyst is a non-porous ext

  • Q : Gibberella fusarium in bioremediation

    in bioremediation gibberella fusarium is used to break down____?

  • Q : Question associated to vapour pressure

    Choose the right answer from following. The vapour pressure lowering caused by the addition of 100 g of sucrose(molecular mass = 342) to 1000 g of water if the vapour pressure of pure water at 25degree C is 23.8 mm Hg: (a)1.25 mm Hg (b) 0.125 mm Hg (c) 1.15 mm H

  • Q : Problem on molality Select the right

    Select the right answer of the question. Calculate the molality of 1 litre solution of 93% H2SO4 (weight/volume). The density of the solution is 1.84 g /ml : (a) 10.43 (b) 20.36 (c) 12.05 (d) 14.05

  • Q : Explain the catalyst definition and

    Catalyst is a substance which accelerates the rate of a chemical reaction without undergoing any change in its chemical composition or mass during the reaction. The phenomenon of increasing the rate of a reaction with the help of a catalyst is known as catalysis.