--%>

Describe characteristics of halides and oxides.

Halides characteristics

(i) These trihalides are mainly covalent with the exception of BiF3 which is ionic.

(ii) The ionic character of trihalides increases in going down the group.

(iii) Like hydrides, these trihalides have pyramidal structure.

(iv) These trihalides except NX3 can be easily hydrolysed by water.

The inability of trihalides of N to hydrolyse is attributed to the non-availability of vacant d-orbitals in nitrogen.

(v) The trihalides of P, As, Sb (especially fluorides and chlorides) act as Lewis acids and combine with Lewis bases

PF3 + F2  1973_halides and oxides.png  PF5

SbF3 + 2F-  1973_halides and oxides.png   [SbF5]
2-

(vi) The pentahalides in general, have less thermal stability as compared to trihalides.

(vii) All the pentahalides act as Lewis acids. It is because the central atom can easily accept the halide ions due to presence of vacant d-orbital and can extend their co-ordination number.

(viii) PCl5 exists as molecule in gaseous state but in solid state it exists as [PCl4]+[PCl6]- and is ionic in nature. PBr5PI5 also exists in the ionic form in solid state.

Reactivity towards oxygen: the elements of this group combine with oxygen directly or indirectly to form a large number of different types of oxides.

Nature of oxides

All the oxides of nitrogen except NO and N2O and phosphorus are strongly acidic: oxides of arsenic are weakly acidic; oxides of antimony are amphoteric and those of bismuth are weakly basic.

Reason: the change in character from acidic to basic can be explained on the basis of the size of atoms. As the size of nitrogen atom is small and it has a strong positive field, it interacts with water more strongly pulling the electron pair between O - H bond and thus release of H+ ions.

However, this tendency diminishes with the increase in size and therefore decreases the acidic character or conversely increases the basic character.

As far as the stability of the oxides is connected it is found that oxides having elements in the higher oxidation state become less stable as we move down to group. This is because of the import pair effect.

   Related Questions in Chemistry

  • Q : How to calculate solutions ionic

    Transference numbers and molar conductors can be used to calculate ionic mobilities. This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

    Q : Problem on reversible and irreversible

    The second law states that  dS ≥ (dQ/T), where dS = dQ/T for a reversible process and dS > dQ/T for an irreversible process.   a. Show that since dW12 = -dW21 (dWreverse = -dWforward) for a r

  • Q : Ddd 4) The addition of S2- ion to

    4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s).

  • Q : Molarity of acid solution If 20ml of

    If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is: (a) 0.1M (b) 0.2M  (c) 0.3M (d) 0.4M Choose the right answer fron above.

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : Cations Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Describe Enzyme Catalyzed reactions

    Many enzyme catalyzed reactions obeys a complex rate equation that can be written as the total quantity of enzyme and the whole amount of substrate in the reaction system. Many rate equations that are more complex than first and se

  • Q : Molar concentration of Iron chloride

    Provide solution of this question. A certain aqueous solution of FeCl3 (formula mass =162) has a density of 1.1g/ml and contains 20.0% Fecl. Molar concentration of this solution is: (a) .028 (b) 0.163 (c) 1.27 (d) 1.47

  • Q : Difference among hcl gas and hcl acid

    What is the basic difference among hcl gas and hcl acid? Briefly state the difference?