--%>

Describe characteristics of halides and oxides.

Halides characteristics

(i) These trihalides are mainly covalent with the exception of BiF3 which is ionic.

(ii) The ionic character of trihalides increases in going down the group.

(iii) Like hydrides, these trihalides have pyramidal structure.

(iv) These trihalides except NX3 can be easily hydrolysed by water.

The inability of trihalides of N to hydrolyse is attributed to the non-availability of vacant d-orbitals in nitrogen.

(v) The trihalides of P, As, Sb (especially fluorides and chlorides) act as Lewis acids and combine with Lewis bases

PF3 + F2  1973_halides and oxides.png  PF5

SbF3 + 2F-  1973_halides and oxides.png   [SbF5]
2-

(vi) The pentahalides in general, have less thermal stability as compared to trihalides.

(vii) All the pentahalides act as Lewis acids. It is because the central atom can easily accept the halide ions due to presence of vacant d-orbital and can extend their co-ordination number.

(viii) PCl5 exists as molecule in gaseous state but in solid state it exists as [PCl4]+[PCl6]- and is ionic in nature. PBr5PI5 also exists in the ionic form in solid state.

Reactivity towards oxygen: the elements of this group combine with oxygen directly or indirectly to form a large number of different types of oxides.

Nature of oxides

All the oxides of nitrogen except NO and N2O and phosphorus are strongly acidic: oxides of arsenic are weakly acidic; oxides of antimony are amphoteric and those of bismuth are weakly basic.

Reason: the change in character from acidic to basic can be explained on the basis of the size of atoms. As the size of nitrogen atom is small and it has a strong positive field, it interacts with water more strongly pulling the electron pair between O - H bond and thus release of H+ ions.

However, this tendency diminishes with the increase in size and therefore decreases the acidic character or conversely increases the basic character.

As far as the stability of the oxides is connected it is found that oxides having elements in the higher oxidation state become less stable as we move down to group. This is because of the import pair effect.

   Related Questions in Chemistry

  • Q : How molecule-molecule collisions takes

    An extension of the kinetic molecular theory of gases recognizes that molecules have an appreciable size and deals with molecule-molecule collisions. We begin studies of elementary reactions by investigating the collisions b

  • Q : Problem based on molality of glucose

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Question based on relative lowering of

    Give me answer of this question. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to: (a) Mole fraction of solute (b) Mole fraction of solvent (c) Concentration of the solute in grams per litre

  • Q : Moles of chloride ion Select the right

    Select the right answer of the question. A solution of CaCl2 is 0.5 mol litre , then the moles of chloride ion in 500ml will be : (a) 0.25 (b) 0.50 (c) 0.75 (d)1.00

  • Q : Preparation of ammonium sulphate Select

    Select the right answer of the question. Essential quantity of ammonium sulphate taken for preparation of 1 molar solution in 2 litres is: (a)132gm (b)264gm (c) 198gm (d) 212gm

  • Q : Question related to colligative

    The colligative properties of a solution depend on: (a) Nature of solute particles present in it (b) Nature of solvent used (c) Number of solute particles present in it (d) Number of moles of solvent only

  • Q : Molarity Give me answer of this

    Give me answer of this question. If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is:(a) 0.1M (b) 0.2M (c)0.3M (d)0.4M

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : How to calculate solutions ionic

    Transference numbers and molar conductors can be used to calculate ionic mobilities. This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

    Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu