Define Watt or SI unit of power
Watt: W (after J. Watt, 1736-1819): The derived SI unit of power, stated as a power of 1 J acting over the period of 1 s; it therefore has the units of J/s.
Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t
Faraday constant: F (M. Faraday): The electric charge fetched by one mole of electrons or singly-ionized ions. It is equivalent to the product result of the Avogadro constant and the absolute value of the charge on an electron; this i
Young's experiment: double-slit experiment (T. Young; 1801): A well-known experiment that exhibits the wave nature of light (and certainly of other particles). The light is passed from a small source into an opaque screen with the two thin slits. The
What does MeV in MeV photon signify? Briefly describe it.
Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result),
Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.
Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.
Balmer series (J. Balmer; 1885): An equation that explains the emission spectrum of hydrogen whenever an electron is jumping to the next orbital; four of the lines are in visible spectrum, and the remainder (residue) are in the ultraviolet.
Explain Maxwells equations and its four elegant equation? Maxwell's equations (J.C. Maxwell; 1864): The four elegant equations that explain classical electroma
Joule's laws (J.P. Joule) Joule's first law: The heat Q generated whenever a current I flows via a resistance R for a specified time t is specified by: Q = I2
18,76,764
1923740 Asked
3,689
Active Tutors
1455236
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!