--%>

Define Universal constant of gravitation

Universal constant of gravitation: G The constant of proportionality in the Newton’s law of universal gravitation and that plays a comparable role in Sir Einstein's general relativity. This is equivalent to the 6.672 x 10-11 N m2/kg2.

   Related Questions in Physics

  • Q : Define Kilogram or SI unit of mass

    Kilogram: kg: The basic SI unit of mass that is the only SI unit still maintained by a physical artifact: a platinum-iridium bar reserved in the International Bureau of Weights and Measures at Sevres, France.

  • Q : Difference between the cathode ray and

    Illustrate the difference between the cathode ray and beta ray?

  • Q : Magnetism what's the unit of Curie

    what's the unit of Curie constant and how to calculate Bohr magneton from the plot of 1/Khi vs Temperature(K)?

  • Q : Dynamic strain aging and the strain

    What is the basic difference among the dynamic strain aging and the strain aging?

  • Q : Define Trojan points Trojan points : L4

    Trojan points: L4 and L5 are the two dynamically stable Lagrange points (that is, beneath certain conditions).

  • Q : Define Joule or SI unit of energy Joule

    Joule: J (after J.P. Joule, 1818-1889): The derived SI unit of energy stated as the quantity of work done by moving an object via a distance of 1 m by exerting a force of 1 N; it therefore has units of N m.

  • Q : What is Beauty criterion Beauty

    Beauty criterion (Dirac) - The idea that more aesthetically pleasing a theory is the superior it is. In nature this criterion does not stand up to the actual test -- whether or not forecasts of a given theory agree with observational tests -- however

  • Q : Balanced field takeoff Describe the

    Describe the process of balanced field takeoff in brief?

  • Q : Define Eddington limit Eddington limit

    Eddington limit (Sir A. Eddington): The hypothetical limit at which the photon pressure would surpass the gravitational attraction of a light-emitting body. That is, a body emanating radiation at bigger than the Eddington limit would

  • Q : Explain Maxwells equations and its

    Explain Maxwells equations and its four elegant equation? Maxwell's equations (J.C. Maxwell; 1864): The four elegant equations that explain classical electroma