--%>

Define Superconductivity

Superconductivity: The phenomenon by which, at adequately low temperatures, a conductor can conduct the charge with zero (0) resistance. The current theory for describing superconductivity is the BCS theory.

   Related Questions in Physics

  • Q : Steps to the scientific notation

    Illustrate the steps to the scientific notation? Briefly illustrate the steps.

  • Q : Explain Stefan-Boltzmann law

    Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const

  • Q : Define Permittivity of free space or

    Permittivity of free space: electric constant; epsilon_0: The ratio of the electric displacement to the intensity of the electric field generating it in vacuum. It is equivalent to 8.854 x 10-12 F/m.

  • Q : What is Roche limit Roche limit : The

    Roche limit: The position about a massive body where the tidal forces due to the gravity of the primary equivalent or exceed the surface gravity of a specified satellite. Within the Roche limit, such a satellite will be interrupted by tides.

  • Q : Define Weiss constant Weiss constant :

    Weiss constant: The characteristic constant dependent on the substance, employed in computing the susceptibility of the paramagnetic materials.

  • Q : Explain the cause of Brownian motion

    Briefly define or explain the cause of Brownian motion?

  • Q : Heating a bucket of water than the cup

    Briefly describe the reason why it takes longer to heat a bucket of water than the cup of water?

  • Q : Define Tardon Tardon : A particle that

    Tardon: A particle that has a positive real mass and travels at a speed very less than c in all inertial frames.

  • Q : Balanced field takeoff Describe the

    Describe the process of balanced field takeoff in brief?

  • Q : Explain Daltons law of partial pressures

    Dalton's law of partial pressures (J. Dalton): The net pressure of a mixture of ideal gases is equivalent to the sum of the partial pressures of its components; which is the sum of the pressures which each component would exert when it were present al