--%>

Define Rayleigh criterion or resolving power

Rayleigh criterion: resolving power: The criterion for determining how delicately a set of optics might be able to differentiate. This  starts with the supposition that central ring of one image must fall on the first dark ring of the other; for an objective lens with diameter d and utilizing light with a wavelength lambda (generally taken to be 560 nm), the resolving power is about specified by:

1.22 lambda/d

   Related Questions in Physics

  • Q : Write a short note on diffuse reflection

    Write a short note on diffuse reflection?

  • Q : Velocity of the particle Determine the

    Determine the Velocity of the particle in terms of component veocities?

  • Q : Problem on dot equivalent Obtain the

    Obtain the “dot” equivalent for the circuit shown below and use it to find the equivalent inductive reactance. 2141_dot.jpg

    Q : Define Newton or SI unit of force

    Newton: N (after Sir I. Newton, 1642-1727): The derived SI unit of force, stated as the force needed to give a mass of 1 kg of an acceleration of 1 m/s2; it therefore has units of kg m/s2.

  • Q : Does solar radiation encompass a

    Does solar radiation encompass a complete spectrum of all the forms of electromagnetic radiation?

  • Q : What is Super fluidity Super fluidity :

    Super fluidity: The phenomenon by which, at adequately low temperatures, a fluid can flow with zero (0) viscosity. These causes are related with the superconductivity.

  • Q : Explain Ideal gas laws or Boyle

    Explain Ideal gas laws or describe Boyle's law or Charle's law and Pressure law: Ideal gas laws: Boyle's law:

  • Q : What is Pfund series Pfund series: The

    Pfund series: The series that explains the emission spectrum of hydrogen whenever the electron is jumping to the fifth orbital. Each line is in the infrared part of the spectrum.

  • Q : What is baryon decay Baryon decay - The

    Baryon decay -The idea expected by several grand-unified theories, those classes of subatomic particles termed as baryons (of which the nucleons -- neutrons and protons -- are members) are not eventually stable however indeed de

  • Q : What is Refraction law Refraction law:

    Refraction law: For a wave-front travelling via a boundary among two media, the first with a refractive index of n1, and the other with one of n2, the angle of incidence theta is associated to the angle of refraction phi by: