--%>

Define Parsec

Parsec: The unit of distance stated as the distance pointed by an Earth-orbit parallax of 1 arcsec. It equals around 206 264 au, or about 3.086 x 1016 m

   Related Questions in Physics

  • Q : Explain Superposition principle and

    Explain Superposition principle and their illustrations? Superposition principle: The common idea that, whenever a number of influences are performing on a syst

  • Q : State Hooke's law as it applies to a

    a 6.00 kg mass is situated at (-1.00, 3.00) meters, what is its mass moment of inertia: a)about the x-axis b)about the y-axis c)About a line defined by x=6.00 m The same object is hun

  • Q : What is Boltzmann constant Boltzmann

    Boltzmann constant: k (L. Boltzmann) - The constant that explains the relationship between kinetic energy and temperature for molecules in an ideal gas. This is equivalent to the 1.380 622 x 10-23 J/K.

  • Q : Atomic model which the Erwin

    Briefly state the atomic model which the Erwin Schrodinger creates?

  • Q : Explain Pascals principle Pascal's

    Pascal's principle: The pressure exerted to an enclosed incompressible static fluid is transmitted undiminished to all portions of the fluid.

  • Q : What is Permeability of free space or

    Permeability of free space: magnetic constant: mu_0: The ratio of the magnetic flux density in the substance to the external field strength for vacuum. It is equivalent to 4 pi x 10-7 H/m.

  • Q : Kirchhoffs rules or Loop rule or Point

    Explain Kirchhoff's rules or Kirchhoff's Loop rule and Point rule? Kirchhoff's rules (G.R. Kirchhoff) <

  • Q : Brewster's law Brewster's law (D.

    Brewster's law (D. Brewster) - The extent or level of the polarization of light reflected from a transparent surface is maximum whenever the reflected ray is at right angle to the refracted ray.  

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Explain Faradays law Faraday's law (M.

    Faraday's law (M. Faraday): The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in the differential form,