--%>

Define Hertz or SI unit of frequency

Define Hertz or SI unit of frequency:

Hertz: Hz (after H. Hertz, 1857-1894): The derived SI unit of frequency, stated as a frequency of 1 cycle per s; it therefore has units of s-1.

   Related Questions in Physics

  • Q : Define Weber or SI unit of magnetic flux

    Weber: Wb (after W. Weber, 1804-1891): The derived SI unit of magnetic flux equivalent to the flux that, connecting a circuit of one turn, generates in it an electromotive force of 1 V as it is decreased to zero at a uniform rate in a period of 1 s; i

  • Q : Define Eddington limit Eddington limit

    Eddington limit (Sir A. Eddington): The hypothetical limit at which the photon pressure would surpass the gravitational attraction of a light-emitting body. That is, a body emanating radiation at bigger than the Eddington limit would

  • Q : Problem on two coupled coils connected

    In a series adding connection, two coupled coils have equivalent inductances LA; in a series opposing connection, LB. Determine an expression for M in terms of LA and LB. What does the outcome suggest?

  • Q : Fission and Fusion What do you mean by

    What do you mean by Fission and Fusion?

  • Q : What do you understand by the term

    What do you understand by the term Ambient Reflection? And also write down its characteristic?

  • Q : Define Siemens or SI unit of an

    Siemens: S (after E.W. von Siemens, 1816-1892): The derived SI unit of an electrical conductance equivalent to the conductance of an element which has a resistance of 1 O [ohm]; this has units of O-1.

  • Q : Calculate power consumed : A voltage v

    : A voltage v = 150 + j180 is applied across an impedance and the current flowing is I = 5 - j4 find ? A, impedance . B, resistance. C, reactance. D, power consumed. 

  • Q : Explain Maxwells equations and its

    Explain Maxwells equations and its four elegant equation? Maxwell's equations (J.C. Maxwell; 1864): The four elegant equations that explain classical electroma

  • Q : Explain Pascals principle Pascal's

    Pascal's principle: The pressure exerted to an enclosed incompressible static fluid is transmitted undiminished to all portions of the fluid.

  • Q : Explain Tachyon paradox Tachyon

    Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero e