--%>

Define Heat pumps

Heat pumps move heat from one place to another. They work similar to refrigeration. The movement of heat takes energy, either electrical energy as in the use of  vapor compression heat pumps or thermal energy as in the use of absorption heat pumps. The heat pump efficiency depends on the energy used in moving the heat and the amount of heat recovered from the heat source. Heat pumps are used to provide space heating and cooling, water heating and in some cases recover heat from exhaust air.

   Related Questions in Physics

  • Q : Define Planck constant Planck constant

    Planck constant: h: The basic constant equivalent to the ratio of the energy of a quantum of energy to its frequency. This is the quantum of action. This has the value 6.626 196 x 10-34 J s.

  • Q : Define Schwarzschild radius

    Schwarzschild radius: The radius ‘r’ of the event horizon for a Schwarzschild black hole of mass m is specified by (in geometrized units) r = 2 m. In its conventional units: r = 2 G m/c2

  • Q : Explain Rayleigh-Jeans law

    Rayleigh-Jeans law: For a blackbody at the thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by: R = 2 pi nu2 k T/c2.<

  • Q : Define Charles law Charles' law (J.A.C.

    Charles' law (J.A.C. Charles; c. 1787): The volume of an ideal gas at constant (steady) pressure is proportional to the thermodynamic temperature of that gas.

  • Q : Define Second or SI unit of time

    Second: s: The basic SI unit of time, stated as the period of time equivalent to the duration of 9 192 631 770 periods of the radiation analogous to the transition between the two hyperfine levels of the ground state of cesium-133 atom.

  • Q : What is baryon decay Baryon decay - The

    Baryon decay -The idea expected by several grand-unified theories, those classes of subatomic particles termed as baryons (of which the nucleons -- neutrons and protons -- are members) are not eventually stable however indeed de

  • Q : Non-Parametric Tests Activity

    Activity 9:   Non-Parametric Tests    4Non-Parametric Tests While you have learned a number of parametric statistical techniques, you are also aware that if the assumptions related to

  • Q : Explain Keplers laws or Keplers

    Explain Keplers laws or Keplers first law, second law and third law? Kepler's laws (J. Kepler) Kepler's first

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source

  • Q : What MeV in MeV photon signify What

    What does MeV in MeV photon signify? Briefly describe it.