--%>

Define Equivalence principle

Equivalence principle: The fundamental postulate of Sir Einstein’s general theory of relativity that posits that acceleration is basically indistinguishable from the gravitational field. In another words, when you are in an elevator that is utterly sealed and protected from the outside, and hence you can’t "peek outside," then when you feel a force (that is weight), it is basically not possible for you to say whether the elevator is present in a gravitational field, or whether the elevator has rockets joined to it and is accelerating "upward."

However that in practical conditions -- say, sitting in a closed room -- it would be probable to determine whether the acceleration felt was due to the uniform thrust or due to the gravitation (state, by computing the gradient of the field; if non-zero, it would point out a gravitational field instead of thrust); though, these differences could be made randomly small. The idea at the back is the equivalence principle is that it acts about the vicinity of a point, instead of over macroscopic distances. This would be not possible to state whether or not a given (random) acceleration field was caused by the thrust or gravitation by the use of physics by only.

The equivalence principle forecasts interesting general relativistic consequences since not only are the two indistinguishable to human observers, however also to the Universe as well -- any effect which occurs whenever an observer is accelerating must also occur in a gravitational field, and vice-versa.

   Related Questions in Physics

  • Q : What is Arago spot What is  Arago

    What is Arago spot? The bright spot which appears in the shadow of a consistent disc being backlit by monochromatic light originating from a point source. &n

  • Q : Scanning electron and transmission

    Give one benefit of a scanning electron microscope over the transmission electron microscope? Briefly explain it.

  • Q : What is Transition temperature

    Transition temperature: The temperature (that is, dependant on the substance comprised) below that a superconducting material conducts electricity with zero resistance; therefore, the temperature above which a superconductor lose its superconductive p

  • Q : Define Laue pattern Laue pattern (M.

    Laue pattern (M. von Laue): The pattern generated on a photographic film whenever high-frequency electromagnetic waves (like x-rays) are fired at the crystalline solid.

  • Q : Define Singularity Singularity : The

    Singularity: The center of a black hole, where the curvature of space-time is maximal. At singularity, the gravitational tides deviate; no solid object can yet theoretically survive beating the singularity. Though singularities usually predict inconsi

  • Q : Abhi what should be the choice of

    what should be the choice of standard unit.

  • Q : Define Uniformity principle Uniformity

    Uniformity principle (E.P. Hubble): The principle which the laws of physics here and now are not dissimilar, at least qualitatively, from the laws of physics in preceding or future epochs of time, or somewhere else in the Universe. This principle was

  • Q : Dielectric Materials Dielectric is a

    Dielectric is a material in which energy can be accumulated. Ideally, it  is  a non-conductor  of  electric  charge  like  insulators, but  an  efficient   supporter  of  electrostatic  fields. The

  • Q : What is Geometrized units Geometrized

    Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often.

    Q : Explain Lagrange points Lagrange points

    Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers