--%>

Define Equivalence principle

Equivalence principle: The fundamental postulate of Sir Einstein’s general theory of relativity that posits that acceleration is basically indistinguishable from the gravitational field. In another words, when you are in an elevator that is utterly sealed and protected from the outside, and hence you can’t "peek outside," then when you feel a force (that is weight), it is basically not possible for you to say whether the elevator is present in a gravitational field, or whether the elevator has rockets joined to it and is accelerating "upward."

However that in practical conditions -- say, sitting in a closed room -- it would be probable to determine whether the acceleration felt was due to the uniform thrust or due to the gravitation (state, by computing the gradient of the field; if non-zero, it would point out a gravitational field instead of thrust); though, these differences could be made randomly small. The idea at the back is the equivalence principle is that it acts about the vicinity of a point, instead of over macroscopic distances. This would be not possible to state whether or not a given (random) acceleration field was caused by the thrust or gravitation by the use of physics by only.

The equivalence principle forecasts interesting general relativistic consequences since not only are the two indistinguishable to human observers, however also to the Universe as well -- any effect which occurs whenever an observer is accelerating must also occur in a gravitational field, and vice-versa.

   Related Questions in Physics

  • Q : What is Ground source Heat Pumps Ground

    Ground source Heat Pumps (GSHP): This technology makes use of the energy stored in the earth’s crust, which comes mainly from solar radiation. Fundamentally, heat pumps take up heat at a certain temperature and discharge it at a higher temperatu

  • Q : Define Kilogram or SI unit of mass

    Kilogram: kg: The basic SI unit of mass that is the only SI unit still maintained by a physical artifact: a platinum-iridium bar reserved in the International Bureau of Weights and Measures at Sevres, France.

  • Q : Explain Event horizon Event horizon:

    Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t

  • Q : What is De Broglie wavelength De

    De Broglie wavelength (L. de Broglie; 1924): The prediction that particles too contain wave characteristics, where the efficient wavelength of the particle would be inversely proportional to its momentum, where the constant of the pro

  • Q : Formula for acceleration What is the

    What is the appropriate formula employed to compute the acceleration? Explain in brief.

  • Q : Explain Pascals principle Pascal's

    Pascal's principle: The pressure exerted to an enclosed incompressible static fluid is transmitted undiminished to all portions of the fluid.

  • Q : Define Spin-orbit effect Spin-orbit

    Spin-orbit effect: The effect that causes atomic energy levels to be split since electrons contain intrinsic angular momentum (that is spin) in summation to their extrinsic orbital angular momentum.

  • Q : What is baryon decay Baryon decay - The

    Baryon decay -The idea expected by several grand-unified theories, those classes of subatomic particles termed as baryons (of which the nucleons -- neutrons and protons -- are members) are not eventually stable however indeed de

  • Q : Define Faraday constant Faraday

    Faraday constant: F (M. Faraday): The electric charge fetched by one mole of electrons or singly-ionized ions. It is equivalent to the product result of the Avogadro constant and the absolute value of the charge on an electron; this i

  • Q : Explain BCS theory BCS theory -  The

    BCS theory - The theory put forth to elucidate both superconductivity and super fluidity. This suggests that in the superconducting (or super fluid) state electrons form Cooper pairs, where two electrons proceed as a single unit. This takes a non