--%>

Define Equivalence principle

Equivalence principle: The fundamental postulate of Sir Einstein’s general theory of relativity that posits that acceleration is basically indistinguishable from the gravitational field. In another words, when you are in an elevator that is utterly sealed and protected from the outside, and hence you can’t "peek outside," then when you feel a force (that is weight), it is basically not possible for you to say whether the elevator is present in a gravitational field, or whether the elevator has rockets joined to it and is accelerating "upward."

However that in practical conditions -- say, sitting in a closed room -- it would be probable to determine whether the acceleration felt was due to the uniform thrust or due to the gravitation (state, by computing the gradient of the field; if non-zero, it would point out a gravitational field instead of thrust); though, these differences could be made randomly small. The idea at the back is the equivalence principle is that it acts about the vicinity of a point, instead of over macroscopic distances. This would be not possible to state whether or not a given (random) acceleration field was caused by the thrust or gravitation by the use of physics by only.

The equivalence principle forecasts interesting general relativistic consequences since not only are the two indistinguishable to human observers, however also to the Universe as well -- any effect which occurs whenever an observer is accelerating must also occur in a gravitational field, and vice-versa.

   Related Questions in Physics

  • Q : What is De Broglie wavelength De

    De Broglie wavelength (L. de Broglie; 1924): The prediction that particles too contain wave characteristics, where the efficient wavelength of the particle would be inversely proportional to its momentum, where the constant of the pro

  • Q : Explain Rydberg formula Rydberg formula

    Rydberg formula (Rydberg): The formula that explains all of the characteristics of hydrogen's spectrum, comprising the Balmer, Paschen, Lyman, Brackett, and Pfund sequence. For the transition between an electron in

  • Q : Define Lenzs law Lenz's law (H.F. Lenz;

    Lenz's law (H.F. Lenz; 1835): The induced electric current always flows in such a direction that it resists the change generating it.

  • Q : Describe the applications of the nmr

    Briefly describe the applications of the nmr spectroscopy?

  • Q : Explain Millikan oil drop experiment

    Millikan oil drop experiment (R.A. Millikan): A famed experiment designed to compute the electronic charge. The drops of oil were carried past a consistent electric field among charged plates. Subsequent to charging the drop with x-ra

  • Q : Explain Fizeau method Fizeau method (A.

    Fizeau method (A. Fizeau, 1851): One of the primary truthfully relativistic experiments intended to compute the speed of light. Light is passed via a spinning cog-wheel driven by running water, is reflected off a far-away mirror, and

  • Q : Explain Boyle's law Boyle's law (R.

    Boyle's law (R. Boyle; 1662); Mariotte's law (E. Mariotte; 1676) - The product result of the volume and pressure of an ideal gas at constant (steady) temperature is constant.

  • Q : Problem on magnetically coupled pair

    When one coil of a magnetically coupled pair has a current of 5.0A, the resulting fluxes Φ11 and Φ21 are 0.2mWb and 0.4mWb, respectively.  If the turns are N1 = 500 and N2 = 1500, find L1, L2, M and the coeffici

  • Q : Gas encompass density or not Explain in

    Explain in brief that the gas encompass density or not?

  • Q : Define Hertz or SI unit of frequency

    Define Hertz or SI unit of frequency: Hertz: Hz (after H. Hertz, 1857-1894): The derived SI unit of frequency, stated as a frequency of 1 cycle per s; it therefore has units of s-1.