--%>

Define Big-O notation

Big-O notation: If f(n) and g(n) are functions of a natural number n, we write

f(n) is O(g(n))

and we say f is big-O of g if there is a constant C (independent of n) such that f(n) ≤ Cg(n) for all suciently large n, or, more precisely, such that for some constant N we have f(n) ≤ Cg(n) for all n ≥ N.

With care, we can also use the big-O notation in equations. We might write

f(n) = O(g(n)) or f(n) = g(n)+O(h(n));

   Related Questions in Mathematics

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Statistics Caterer determines that 37%

    Caterer determines that 37% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?

  • Q : Define terms Terms : Terms are defined

    Terms: Terms are defined inductively by the following clauses.               (i) Every individual variable and every individual constant is a term. (Such a term is called atom

  • Q : State Prime number theorem Prime number

    Prime number theorem: A big deal is known about the distribution of prime numbers and of the prime factors of a typical number. Most of the mathematics, although, is deep: while the results are often not too hard to state, the proofs are often diffic

  • Q : What is Non-Logical Vocabulary

    Non-Logical Vocabulary: 1. Predicates, called also relation symbols, each with its associated arity. For our needs, we may assume that the number of predicates is finite. But this is not essential. We can have an infinite list of predicates, P

  • Q : State Measuring complexity Measuring

    Measuring complexity: Many algorithms have an integer n, or two integers m and n, as input - e.g., addition, multiplication, exponentiation, factorisation and primality testing. When we want to describe or analyse the `easiness' or `hardness' of the a

  • Q : Explain Factorisation by trial division

    Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : Problem on Prime theory Suppose that p

    Suppose that p and q are different primes and n = pq. (i) Express p + q in terms of Ø(n) and n. (ii) Express p - q in terms of p + q and n. (iii) Expl

  • Q : The mean of the sampling distribution

    1. Caterer determines that 87% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000 taken. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?<