--%>

Decision Variables

Determine Decision Variables:

Let X1 be the number of private homes to be inspected
Let X2 be the number of office buildings to be inspected
Let X3 be the number of industrial plants to be inspected

Objective Function

Max Z = X1 + X2 + X3

With subject to Constraints

(1) X1 + X2 + X3 ≤ 0.6X1 (private homes must be at least 60% of the total inspections)
This can be rewritten as 0.4X1 + X2 + X3 ≤ 0

(2) X2 ≥ 8 (minimum requirement for offices)
(3) X3 ≥ 8 (minimum requirement for plants)
(4) 2X1 + 4X2 + 6X3 ≤ 120 (electrical inspection)
(5) X1 + 3X2 + 3X3 ≤ 80 (gas inspection)
(6) 3X1 + 2X2 + X3 ≤ 100 (electrical inspection)
(7) Xi ≥ 0 (non-negativity)

   Related Questions in Basic Statistics

  • Q : Variance and standard error A hospital

    A hospital treated 412 skin cancer patients over a year. Of these, 197 were female. Give the point estimate of the proportion of females seeking treatment for skin cancer. Give estimates of the

  • Q : Problems on ANOVA We are going to

    We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would l

  • Q : Creating Grouped Frequency Distribution

    Creating Grouped Frequency Distribution: A) At first we have to determine the biggest and smallest values. B) Then we have to Calculate the Range = Maximum - Minimum C) Choose the number of classes wished for. This is generally between 5 to 20. D) Find out the class width by dividing the range b

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Computers playing games How Computers

    How Computers playing games can be categorized according to different dimensions?

  • Q : Quantities in a queuing system

    Quantities in a queuing system: A: Count of

  • Q : Probability how can i calculate

    how can i calculate cumulative probabilities of survival

  • Q : Networks of queues Networks of queues •

    Networks of queues • Typically, the flow of customers/request through a system may involve a number of different processing nodes.– IP packets through a computer network– Orders through a manufactur

  • Q : What is Inter-arrival times

    Inter-arrival times:A) Requests arrive randomly, often separated by small time intervals with few long separations among themB) The time until the next arrival is independent of when the last arrival occurredC) Coro