--%>

Decision Variables

Determine Decision Variables:

Let X1 be the number of private homes to be inspected
Let X2 be the number of office buildings to be inspected
Let X3 be the number of industrial plants to be inspected

Objective Function

Max Z = X1 + X2 + X3

With subject to Constraints

(1) X1 + X2 + X3 ≤ 0.6X1 (private homes must be at least 60% of the total inspections)
This can be rewritten as 0.4X1 + X2 + X3 ≤ 0

(2) X2 ≥ 8 (minimum requirement for offices)
(3) X3 ≥ 8 (minimum requirement for plants)
(4) 2X1 + 4X2 + 6X3 ≤ 120 (electrical inspection)
(5) X1 + 3X2 + 3X3 ≤ 80 (gas inspection)
(6) 3X1 + 2X2 + X3 ≤ 100 (electrical inspection)
(7) Xi ≥ 0 (non-negativity)

   Related Questions in Basic Statistics

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : What is your conclusion The following

    The following data were collected on the number of emergency ambulance calls for an urban county and a rural county in Florida. Is County type independent of the day of the week in receiving the emergency ambulance calls? Use α = 0.005. What is your conclusion? Day of the Week<

  • Q : Problems on ANOVA We are going to

    We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would l

  • Q : State the hypotheses At Western

    At Western University the historical mean of scholarship examination score for freshman applications is 900. Population standard deviation is assumed to be known as 180. Each year, the assistant dean uses a sample of applications to determine whether the mean ex

  • Q : Use the NW corner rule to find an

      (a) Use the NW corner rule to find an initial BFS, then solve using the transportation simplex method. Indicate your optimal objective function value. (b) Suppose we increase s1 from 15 to 16, and d3 from 10 to 11. S

  • Q : Problem on queuing diagram Draw a 

    Draw a queuing diagram for the systems below and describe them using Kendall’s notation: A) Single CPU system <

  • Q : Cumulative Frequency and Relative

    Explain differences between Cumulative Frequency and Relative Frequency?

  • Q : Stats The College Board SAT college

    The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012). Sample data showing the math and writing scores for a sample of twelve students who took the SAT follow. http://west.cengagenow.com/ilrn/books/assb12h/images/webfiles/

  • Q : Write out the null hypothesis 1.

    1. (AAC/ACA c9q1).  For each of the following studies, decide whether you can reject the null hypothesis that the groups come from identical populations. Use the alpha = .05 level.1a.

  • Q : Computing Average revenue using

    Can anyone help me in the illustrated problem? The airport branch of a car rental company maintains a fleet of 50 SUVs. The inter-arrival time between the requests for an SUV is 2.4 hrs, on an average, with a standard deviation of 2.4 hrs. There is no indication of a

  • ©TutorsGlobe All rights reserved 2022-2023.