--%>

Creating Grouped Frequency Distribution

Creating Grouped Frequency Distribution: A) At first we have to determine the biggest and smallest values. B) Then we have to Calculate the Range = Maximum - Minimum C) Choose the number of classes wished for. This is generally between 5 to 20. D) Find out the class width by dividing the range by the number of classes and then rounding up. We have to keep in mind that we must round up, not off. Generally 4.2 would round to be 4, however in rounding up, it becomes 5. When the range divided by the number of classes gives an integer value (without any remainder), then you can either add up one to the number of classes or add up one to the class width. Sometimes you are locked to a certain number of classes as of instructions. The Bluman text fails to state the case when there is no remainder. E) Choose an appropriate starting point less than or equivalent to the minimum value. "The class width times, the number of classes" values ware most capable to cover. We require covering one more value than the range. We can finely follow the rule: The beginning point plus the number of class’s times the class width should be bigger than the maximum value. Here the lower limit is the starting point of the first class. We can get the rest of lower limits by continuously adding the class width to this lower limit. F) To getting the upper limit of first class, we can subtract one from the lower limit of second class. Then carry on adding the class width to this upper limit to determine the rest of the upper limits. G) Find out the boundaries by subtracting 0.5 units from lower limits and adding up to 0.5 units from upper limits. The boundaries are as well half-way among the upper limit of one class and the lower limit of subsequent class. It is not essential to find the boundaries whether you are trying to achieve it. H) Now tally the data. I) Find out the frequencies. J) Now determine the cumulative frequencies. Based on what you are trying to achieve, it might not be essential to determine the cumulative frequencies. K) Whenever essential, find out the relative frequencies and or relative cumulative frequencies. To find the frequencies, it is possible to have TI-82 calculator for you. Initially we will have to determine the class width and class boundaries.

   Related Questions in Basic Statistics

  • Q : Report on Simple Random Sampling with

    One of my friend has a problem on simple random sampling. Can someone provide a complete Report on Simple Random Sampling with or without replacement?

  • Q : Program Evaluation and Review

    Program Evaluation and Review Technique (PERT) A) Developed by US Navy and a consulting firm in 1958 for the Polaris submarine project. B) Technique as for CPM method, but acti

  • Q : Computing Average revenue using

    Can anyone help me in the illustrated problem? The airport branch of a car rental company maintains a fleet of 50 SUVs. The inter-arrival time between the requests for an SUV is 2.4 hrs, on an average, with a standard deviation of 2.4 hrs. There is no indication of a

  • Q : Point of estimate standing data se to

    standing data se to develop a point of estimate

  • Q : State Kendalls notation

    Kendall’s notation:  A/B/C/K/m/Z A, Inter-arrival distribution M exponential D constant or determ

  • Q : Define Operational Analysis

    Operational Analysis: • Analysis method based on the measurement of the operational characteristics of the system.

    Q : Cumulative Frequency and Relative

    Explain differences between Cumulative Frequency and Relative Frequency?

  • Q : Stats The College Board SAT college

    The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012). Sample data showing the math and writing scores for a sample of twelve students who took the SAT follow. http://west.cengagenow.com/ilrn/books/assb12h/images/webfiles/

  • Q : State Littles Law Little’s Law : • L =

    Little’s Law: • L = λR = XR • Lq = λW = XW • Steady state system • Little’s Law holds as long as customers are not destroyed or&nbs

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim