--%>

Containee problem

For queries Q1 and Q2, we say Q1 is containedin Q2, denoted Q1 C Q2, iff Q1(D) C Q2(D) for every database D.

The container problern for a fixed Query Qo is the following decision problem:
Given a query Q, decide whether Qo C Q.

The containee probletn for a fixed guery Qo is the following decision problem:
Given a query Q, decide whether Q C Qo.

Formally prove or disprove the following statements:

(a) For every conjunctive query Q0, there is a polynomial-time algorithm to decide the container problem for Q0 and for given conjunctive queries Q.

(b) For every conjunctive query Q0, there is a polynomial-time algorithm to decide the container problem for Q0 and for given conjunctive queries Q that can be obtained from Qo by adding some atoms.

(c) For every conjunctive euery Qo, there is a polynomial-time algorithm to decide the containee problem for Q0 and for grven conjunctive queries  Q.

(d) For every flrst-order Query Q0, there is an algorithm to decide the containee problem for Qo and for given first-order queries Q.

To prove a statement, sketch an algorithm, along with an argument why it is polynomial, if possible. To disprove it, provide an M-hardness or undecidability proof.

   Related Questions in Mathematics

  • Q : Explain a rigorous theory for Brownian

    Explain a rigorous theory for Brownian motion developed by Wiener Norbert.

  • Q : Theorem-G satis es the right and left

    Let G be a group. (i) G satis es the right and left cancellation laws; that is, if a; b; x ≡ G, then ax = bx and xa = xb each imply that a = b. (ii) If g ≡ G, then (g-1)

  • Q : State Measuring complexity Measuring

    Measuring complexity: Many algorithms have an integer n, or two integers m and n, as input - e.g., addition, multiplication, exponentiation, factorisation and primality testing. When we want to describe or analyse the `easiness' or `hardness' of the a

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Define terms Terms : Terms are defined

    Terms: Terms are defined inductively by the following clauses.               (i) Every individual variable and every individual constant is a term. (Such a term is called atom

  • Q : What is Non-Logical Vocabulary

    Non-Logical Vocabulary: 1. Predicates, called also relation symbols, each with its associated arity. For our needs, we may assume that the number of predicates is finite. But this is not essential. We can have an infinite list of predicates, P

  • Q : Row-echelon matrix Determine into which

    Determine into which of the following 3 kinds (A), (B) and (C) the matrices (a) to (e) beneath can be categorized:       Type (A): The matrix is in both reduced row-echelon form and row-echelon form. Type (B): The matrix

  • Q : What is Big-O hierarchy The big-O

    The big-O hierarchy: A few basic facts about the big-O behaviour of some familiar functions are very important. Let p(n) be a polynomial in n (of any degree). Then logbn is O(p(n)) and p(n) is O(an<

  • Q : Who independently developed

    Who independently developed a model for simply pricing risky assets?

  • Q : Define Big-O notation Big-O notation :

    Big-O notation: If f(n) and g(n) are functions of a natural number n, we write f(n) is O(g(n)) and we say f is big-O of g if there is a constant C (independent of n) such that f