--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : How elevation and air pressure affects

    Briefly state how does the elevation and air pressure affects the boiling point of water?

  • Q : Bragg's law Bragg's law - Whenever a

    Bragg's law - Whenever a beam of x-rays strikes a crystal surface in which the layers of ions or atoms are often separated, the maximum intensity of the reflected ray takes place when the complement of the angle of incidence, theta (θ), the wave

  • Q : Define Gauss law Gauss' law (K.F.

    Gauss' law (K.F. Gauss): The electric flux via a closed surface is proportional to the arithmetical sum of electric charges contained in that closed surface; in its differential form, div E = rho,

  • Q : Faradays laws of electromagnetic

    Explain Faraday's laws of electromagnetic induction and explain Faraday's first, second and third law of electromagnetic induction? Faraday's laws of electromagnetic in

  • Q : What is Cherenkov radiation Cherenkov

    Cherenkov radiation (P.A. Cherenkov): The radiation emitted by a huge particle which is moving faster than light in the medium via which it is travelling. No particle can travel faster than the light in vacuum, however the speed of light in other medi

  • Q : Define Weiss constant Weiss constant :

    Weiss constant: The characteristic constant dependent on the substance, employed in computing the susceptibility of the paramagnetic materials.

  • Q : What is Laplace equation Laplace

    Laplace equation (P. Laplace): For the steady-state heat conduction in 1-dimension, the temperature distribution is the explanation to Laplace's equation, which defines that the second derivative of temperature with respect to displac

  • Q : What is Lumeniferous aether

    Lumeniferous aether: The substance that filled all the vacant spaces between matter that was employed to elucidate what medium light was "waving" in. Now it has been harmed the reputation of, as Maxwell's equations entail that electromagnetic radiatio

  • Q : State Hooke's law as it applies to a

    a 6.00 kg mass is situated at (-1.00, 3.00) meters, what is its mass moment of inertia: a)about the x-axis b)about the y-axis c)About a line defined by x=6.00 m The same object is hun

  • Q : Define Newton meter What do you mean by

    What do you mean by the term Newton meter? Explain briefly?