--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Define Rayleigh criterion or resolving

    Rayleigh criterion: resolving power: The criterion for determining how delicately a set of optics might be able to differentiate. This  starts with the supposition that central ring of one image must fall on the first dark ring of the other; for

  • Q : What is Cherenkov radiation Cherenkov

    Cherenkov radiation (P.A. Cherenkov): The radiation emitted by a huge particle which is moving faster than light in the medium via which it is travelling. No particle can travel faster than the light in vacuum, however the speed of light in other medi

  • Q : What is Beauty criterion Beauty

    Beauty criterion (Dirac) - The idea that more aesthetically pleasing a theory is the superior it is. In nature this criterion does not stand up to the actual test -- whether or not forecasts of a given theory agree with observational tests -- however

  • Q : Collision & Transition State Theory

    Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions. b)      Calculate the temperature wh

  • Q : Problem on magnetically coupled pair

    When one coil of a magnetically coupled pair has a current of 5.0A, the resulting fluxes Φ11 and Φ21 are 0.2mWb and 0.4mWb, respectively.  If the turns are N1 = 500 and N2 = 1500, find L1, L2, M and the coeffici

  • Q : Explain Kirchhoffs laws or Kirchhoffs

    Kirchhoff's laws (G.R. Kirchhoff) Kirchhoff's first laws: An incandescent solid or gas in high pressure will generate a continuous spectrum.

    Q : Instrument used to measure the volume

    Name the instrument which is used to measure the volume? Explain in short?

  • Q : Explain Correspondence limit or

    Explain Correspondence limit or Correspondence principle? Correspondence limit (N. Bohr): The limit at which a more common theory decreases to a more specialized theory when the situations that the

  • Q : Define Ohm or SI unit of electric

    Ohm: Omega: O (after G. Ohm, 1787-1854) The derived SI unit of electric resistance, stated as the resistance among two points on a conductor whenever a constant potential difference of 1 V generates a current of 1 A in the conductor;

  • Q : Physics Assignement complete assignment

    complete assignment with clear solution and explanation