--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Define Permittivity of free space or

    Permittivity of free space: electric constant; epsilon_0: The ratio of the electric displacement to the intensity of the electric field generating it in vacuum. It is equivalent to 8.854 x 10-12 F/m.

  • Q : Define Keplers 1-2-3 law Kepler's 1-2-3

    Kepler's 1-2-3 law: The other formulation of Kepler's third law, that relates to the mass m of the primary to a secondary's angular velocity omega and semi major axis a: m o = omega2 a3

  • Q : Define Newton meter What do you mean by

    What do you mean by the term Newton meter? Explain briefly?

  • Q : Define Ergosphere Ergosphere: The area

    Ergosphere: The area around a rotating black hole, among the event horizon and the static limit, where the rotational energy can be removed from the black hole.

  • Q : Define Superconductivity

    Superconductivity: The phenomenon by which, at adequately low temperatures, a conductor can conduct the charge with zero (0) resistance. The current theory for describing superconductivity is the BCS theory.

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Define Parsec Parsec : The unit of

    Parsec: The unit of distance stated as the distance pointed by an Earth-orbit parallax of 1 arcsec. It equals around 206 264 au, or about 3.086 x 1016 m

  • Q : What is Pfund series Pfund series: The

    Pfund series: The series that explains the emission spectrum of hydrogen whenever the electron is jumping to the fifth orbital. Each line is in the infrared part of the spectrum.

  • Q : Define Le Chateliers principle Le

    Le Chatelier's principle (H. Le Chatelier; 1888): When a system is in equilibrium, then any modification imposed on the system tends to shift the equilibrium state to decrease the consequence of that applied change.

  • Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;