--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Define the term wave fronts What do you

    What do you mean by the term wave fronts? Explain in short.

  • Q : Describe Solar water heating Solar

    Solar water heating: Solar water heaters are simple, reliable, famous and widespread. They are probably the Low Carbon technology closest to being commercially practised. The most efficient designs concentrate solar radiation onto a small diameter tub

  • Q : What is Bode's law Bode's law :

    Bode's law: Titius-Bode law - The mathematical formula that generates, with a fair quantity of accuracy, the semi major axes of the planets in out of order from the Sun. Write down the progression 0, 3, 6, 12, 24,

  • Q : Define Tardon Tardon : A particle that

    Tardon: A particle that has a positive real mass and travels at a speed very less than c in all inertial frames.

  • Q : Define Static limit Static limit : The

    Static limit: The distance from a rotating black hole where no spectator can possibly stay at rest (with respect to the far-away stars) since of inertial frame dragging; this area is external of the event horizon, apart from at the poles where it meet

  • Q : Explain Muon experiment Muon

    Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic

  • Q : What is Ground source Heat Pumps Ground

    Ground source Heat Pumps (GSHP): This technology makes use of the energy stored in the earth’s crust, which comes mainly from solar radiation. Fundamentally, heat pumps take up heat at a certain temperature and discharge it at a higher temperatu

  • Q : Law of Lamberts Cosine State the law of

    State the law of Lamberts Cosine? Describe briefly?

  • Q : Becquerel Becquerel : Bq (after A.H.

    Becquerel: Bq (after A.H. Becquerel, 1852-1908) - The derived SI unit of the activity stated as the activity of radionuclide decay at a rate, on the average, of one nuclear transition every 1 s; it hence has units of s-1.

  • Q : Define Equivalence principle

    Equivalence principle: The fundamental postulate of Sir Einstein’s general theory of relativity that posits that acceleration is basically indistinguishable from the gravitational field. In another words, when you are in an elevator that is utte