--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Define Van der Waals force Van der

    Van der Waals force (J.D. van der Waals): The forces responsible for non-ideal behavior of gases, and for lattice energy of molecular crystals. There are three main causes: dipole-dipole interaction; dipole-induced dipole moments; and dispersion a for

  • Q : Solution Of Laplace’s Equation 1. Solve

    1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from t

  • Q : What is Loschmidt constant or Loschmidt

    Loschmidt constant: Loschmidt number: NL: The total number of particles per unit volume of an ideal gas at standard pressure and temperature. It has the value of 2.687 19 x 1025 m-3.

  • Q : Define Schwarzschild radius

    Schwarzschild radius: The radius ‘r’ of the event horizon for a Schwarzschild black hole of mass m is specified by (in geometrized units) r = 2 m. In its conventional units: r = 2 G m/c2

  • Q : Define Systeme Internationale d'Unites

    Systeme Internationale d'Unites (SI): The rationalized and coherent system of units derived from the m.k.s. system (that itself is derived from metric system) in common utilization in physics nowadays.

  • Q : What is Permeability of free space or

    Permeability of free space: magnetic constant: mu_0: The ratio of the magnetic flux density in the substance to the external field strength for vacuum. It is equivalent to 4 pi x 10-7 H/m.

  • Q : Explain quantum physics why quantum

    why quantum physics is studied? give me some of topics

  • Q : Define Joule or SI unit of energy Joule

    Joule: J (after J.P. Joule, 1818-1889): The derived SI unit of energy stated as the quantity of work done by moving an object via a distance of 1 m by exerting a force of 1 N; it therefore has units of N m.

  • Q : Non-Parametric Tests Activity

    Activity 9:   Non-Parametric Tests    4Non-Parametric Tests While you have learned a number of parametric statistical techniques, you are also aware that if the assumptions related to

  • Q : Meaning of Network Define the meaning

    Define the meaning of Network in brief.