--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Brownian motion Brownian motion   - The

    Brownian motion  - The continuous random motion of a solid microscopic particle whenever suspended in a fluid medium due to the effect of ongoing bombardment by molecules and atoms.  

  • Q : Information in physics What do you mean

    What do you mean by the term information in physics?

  • Q : Define Universal constant of gravitation

    Universal constant of gravitation: G The constant of proportionality in the Newton’s law of universal gravitation and that plays a comparable role in Sir Einstein's general relativity. This is equivalent to the 6.672 x 10-1

  • Q : Explain Lagrange points Lagrange points

    Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers

  • Q : Define Pauli Exclusion Principle Pauli

    Pauli Exclusion Principle (W. Pauli; 1925): No two similar fermions in a system, like electrons in an atom, can contain an identical set of the quantum numbers.

  • Q : Heating a bucket of water than the cup

    Briefly describe the reason why it takes longer to heat a bucket of water than the cup of water?

  • Q : Explain Stefan-Boltzmann law

    Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const

  • Q : Branches of physics Briefly list out

    Briefly list out the name of all the branches of physics?

  • Q : Describe the term ntu in thermodynamics

    Describe the term ntu in thermodynamics? Illustrate in short.

  • Q : Explain Tachyon paradox Tachyon

    Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero e