--%>

Computing Average revenue using Standard deviation

Can anyone help me in the illustrated problem? The airport branch of a car rental company maintains a fleet of 50 SUVs. The inter-arrival time between the requests for an SUV is 2.4 hrs, on an average, with a standard deviation of 2.4 hrs. There is no indication of a systematic arrival pattern over the course of a day. Suppose that, if all SUVs are rented, then customers are willing to wait until there is an SUV available. The SUV is rented, on an average, for 3 days, with a standard deviation of one day.

a. Determine the average number of SUVs parked in the company’s lot?

b. By using a marketing survey, the company has discovered that if it decreases its daily rental price of $80 by $25, the average demand would rise to 12 rental requests per day and the average rental duration will become 4 days. Supposing that the standard deviation values stay unchanged, should this company adopt this latest pricing policy? Give an analysis!

c. Determine the average time a customer has to wait to rent an SUV? Please employ the initial parameters instead of the information in (b).

d. How would the waiting time change when the company decides to limit all the SUV rentals to exactly 4 days? Suppose that if such a restriction is imposed, the average inter-arrival time will rise to 3 hours, with the standard deviation changing to 3 hrs.

E

Expert

Verified

a) We know that a = 2.4 hours, p = 24 x 3 = 72 hours, CVa = (2.4/2.4) = 1, CVp = (24/72) = 0.33, and m = 50 cars

Percentage of cars used = (1/a)/(m/p) = (1/2.4)/(50/72) = 60%

Therefore, cars in use = 50 x 0.6 = 30

So, cars in parking lot = 20

b) a = 2, p = 96 hours,

Therefore, Percentage of cars used = (1/a)/ (m/p) = (1/2)/ (50/96) = 96%

So, average number of cars used = 50 x 0.96 = 48

Average revenue initially = 80 x 30 = $2400
Average revenue now = 48 x 55 = $2640

Therefore, the company should take the proposed step.

c) a = 2.4 hours, p = 24 x 3 = 72 hours, CVa = (2.4/2.4) = 1, CVp = (24/72) = 0.33, and m = 50 cars,

Waiting time = (p/m)(u^[{2(m+1)}1/2 – 1]/1-u)[CVa2 + CVp2/2]

= (72/50) (0.6^ {(102)1/2 – 1}/0.4) (1 + (0.33)2/2)

= 1.44 x (0.6) ^9 x 0.55/0.4 = 0.02 hours = 1.2 minutes

d) a = 3 hours, p = 24 x 4 =96 hours, CVa = (3/3) = 1, CVp = (24/96) = 0.25, and m = 50 cars

Percentage of cars used
= (1/a)/(m/p) = (1/3)/(50/96) = 64%

Waiting time = (p/m) (u^ [{2(m+1)}1/2 – 1]/1-u) [CVa2 + CVp2/2]

= (96/50) (0.64^ {(102)1/2 – 1}/0.36) (1 + (0.25)2/2)

= 1.92 x (0.64) ^9 x 0.53/0.36 = 0.05 hours = 3 minutes

   Related Questions in Basic Statistics

  • Q : Quantities in a queuing system

    Quantities in a queuing system: A: Count of

  • Q : Get Solved LP Problems Solve Linear

    Solve Linear Programming Questions A producer manufactures 3 models (I, II and III) of a particular product. He uses 2 raw materials A and B of which 4000 and 6000 units respectively are obtainable. The raw materials per unit of 3

  • Q : Develop the most appropriate regression

    Predicting Courier Costs The law firm of Adams, Babcock, and Connors is located in the Dallas-Fort metroplex.  Randall Adams is the senior and founding partner of the firm.  John Babcock has been a partne

  • Q : Statistics basic question This week you

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : State Littles Law Little’s Law : • L =

    Little’s Law: • L = λR = XR • Lq = λW = XW • Steady state system • Little’s Law holds as long as customers are not destroyed or&nbs

  • Q : Write out the null hypothesis 1.

    1. (AAC/ACA c9q1).  For each of the following studies, decide whether you can reject the null hypothesis that the groups come from identical populations. Use the alpha = .05 level.1a.

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : STATISTICS Question This week you will

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Correlation analysis and the regression

    1).  When you take out a mortgage, there are many different kinds of costs.  Usually the two largest are the interest rate (annual percentage that determines the size of your monthly payment) and the loan fee (a one-time percentage charged to you at the time

  • ©TutorsGlobe All rights reserved 2022-2023.