--%>

Computing Average revenue using Standard deviation

Can anyone help me in the illustrated problem? The airport branch of a car rental company maintains a fleet of 50 SUVs. The inter-arrival time between the requests for an SUV is 2.4 hrs, on an average, with a standard deviation of 2.4 hrs. There is no indication of a systematic arrival pattern over the course of a day. Suppose that, if all SUVs are rented, then customers are willing to wait until there is an SUV available. The SUV is rented, on an average, for 3 days, with a standard deviation of one day.

a. Determine the average number of SUVs parked in the company’s lot?

b. By using a marketing survey, the company has discovered that if it decreases its daily rental price of $80 by $25, the average demand would rise to 12 rental requests per day and the average rental duration will become 4 days. Supposing that the standard deviation values stay unchanged, should this company adopt this latest pricing policy? Give an analysis!

c. Determine the average time a customer has to wait to rent an SUV? Please employ the initial parameters instead of the information in (b).

d. How would the waiting time change when the company decides to limit all the SUV rentals to exactly 4 days? Suppose that if such a restriction is imposed, the average inter-arrival time will rise to 3 hours, with the standard deviation changing to 3 hrs.

E

Expert

Verified

a) We know that a = 2.4 hours, p = 24 x 3 = 72 hours, CVa = (2.4/2.4) = 1, CVp = (24/72) = 0.33, and m = 50 cars

Percentage of cars used = (1/a)/(m/p) = (1/2.4)/(50/72) = 60%

Therefore, cars in use = 50 x 0.6 = 30

So, cars in parking lot = 20

b) a = 2, p = 96 hours,

Therefore, Percentage of cars used = (1/a)/ (m/p) = (1/2)/ (50/96) = 96%

So, average number of cars used = 50 x 0.96 = 48

Average revenue initially = 80 x 30 = $2400
Average revenue now = 48 x 55 = $2640

Therefore, the company should take the proposed step.

c) a = 2.4 hours, p = 24 x 3 = 72 hours, CVa = (2.4/2.4) = 1, CVp = (24/72) = 0.33, and m = 50 cars,

Waiting time = (p/m)(u^[{2(m+1)}1/2 – 1]/1-u)[CVa2 + CVp2/2]

= (72/50) (0.6^ {(102)1/2 – 1}/0.4) (1 + (0.33)2/2)

= 1.44 x (0.6) ^9 x 0.55/0.4 = 0.02 hours = 1.2 minutes

d) a = 3 hours, p = 24 x 4 =96 hours, CVa = (3/3) = 1, CVp = (24/96) = 0.25, and m = 50 cars

Percentage of cars used
= (1/a)/(m/p) = (1/3)/(50/96) = 64%

Waiting time = (p/m) (u^ [{2(m+1)}1/2 – 1]/1-u) [CVa2 + CVp2/2]

= (96/50) (0.64^ {(102)1/2 – 1}/0.36) (1 + (0.25)2/2)

= 1.92 x (0.64) ^9 x 0.53/0.36 = 0.05 hours = 3 minutes

   Related Questions in Basic Statistics

  • Q : Use the NW corner rule to find an

      (a) Use the NW corner rule to find an initial BFS, then solve using the transportation simplex method. Indicate your optimal objective function value. (b) Suppose we increase s1 from 15 to 16, and d3 from 10 to 11. S

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : Model Checking Approach Model Checking

    Model Checking Approach: • Specify program model and exhaustively evaluate that model against a speci?cation        –Check that properties hold   

  • Q : Variance and standard error A hospital

    A hospital treated 412 skin cancer patients over a year. Of these, 197 were female. Give the point estimate of the proportion of females seeking treatment for skin cancer. Give estimates of the

  • Q : Define Service Demand Law

    Service Demand Law:• Dk = SKVK, Average time spent by a typical request obtaining service from resource k• DK = (ρk/X

  • Q : Quantities in a queuing system

    Quantities in a queuing system: A: Count of

  • Q : Help An experiment is conducted in

    An experiment is conducted in which 60 participants each fill out a personality test, but not according to the way they see themselves. Instead, 20 are randomly assigned to fill it out according to the way they think a parent sees them (i.e. how a parent would fill it out to describe the participant

  • Q : Problem on Model Checking Part (a).

    Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the sta

  • Q : Probability how can i calculate

    how can i calculate cumulative probabilities of survival

  • Q : Program Evaluation and Review

    Program Evaluation and Review Technique (PERT) A) Developed by US Navy and a consulting firm in 1958 for the Polaris submarine project. B) Technique as for CPM method, but acti