--%>

Compute two sample standard deviations

Consider the following data for two independent random samples taken from two normal populations.

Sample 1 14 26 20 16 14 18

Sample 2 18 16 8 12 16 14

a) Compute the two sample means and the two sample standard deviations.

b) What is the point estimate of the difference between the two population means?

c) Assuming α = .10, conduct p-value based and critical-value based hypothesis tests for the equality

of means of the two populations.

d) What is the 90% confidence interval estimate of the difference between the two population means?

How do the results compare in all the three approaches to hypothesis testing?

 

E

Expert

Verified

Mean sample 1 = X1-bar = (14+26+20+16+14+18)/6 = 18

Mean sample 2 = X2-bar = (18+16+8+12+16+14)/6 = 14

Sample 1 SD = SD1

X1

X1-X1-bar

(X1-X1-bar)2

14

-4

16

26

8

64

20

2

4

16

-2

4

14

-4

16

18

0

0

Sum of (X1-X1-bar)2 = 104

S12 = 104/6-1

        = 20.8

SD1 =  = 4.56

Sample 2 SD = SD2

X2

X1-X1-bar

(X1-X1-bar)2

18

4

16

16

2

4

8

-6

36

12

-2

4

16

2

4

14

0

0

 

Sum of (X2-X2-bar)2 = 64

S22 = 64/6-1

        = 12.8

SD2 =  = 3.58

(b)

Point estimation of difference b/w two means = 18 - 14 = 4

(c)

t-test will be applied because sample size is small.

Hypothesis Formation

Null Hypothesis H0:    µ1 - µ2 = 0

Alternative Hypothesis H1:    µ1 - µ2 ≠ 0

t Statistic

t-statistic = (X1-bar  - x2-bar)/Sp

Where SP =

                  = 2.016

Critical value

Critical value of t with df=10 at 0.1 significance level = 1.812

Critical Region

Reject null hypothesis in favor of alternative if t is greater than t critical value of 1.812 or less than -1.812.

Computation

t-statistic = (18 - 14)/2.016

   = 5.95

Decision

Null hypothesis is rejected in favor of alternative as Z value is greater than Z critical value.

(d)

90% CI of difference between means = (18-14) - 1.812*2.016

                                                                    = 4 - 1.22 < µ < 4 + 1.22

                                                                    = 2.78< µ< 5.22

   Related Questions in Basic Statistics

  • Q : Assumptions in Queuing system

    Assumptions in Queuing system: • Flow balance implies that the number of arrivals in an observation period is equal to the

  • Q : STATISTICS Question This week you will

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Probability how can i calculate

    how can i calculate cumulative probabilities of survival

  • Q : Point of estimate standing data se to

    standing data se to develop a point of estimate

  • Q : State Kendalls notation

    Kendall’s notation:  A/B/C/K/m/Z A, Inter-arrival distribution M exponential D constant or determ

  • Q : Spss in Business and Management Please

    Please tell me the cost of this current assignment. Note : I do not want the Solutions but please tell me the price as the assignment is .. Is the cost 3 euro? Do you sell those questions?

  • Q : Calculate the p- value Medical tests

    Medical tests were conducted to learn about drug-resistant tuberculosis. Of 284 cases tested in New Jersey, 18 were found to be drug- resistant. Of 536 cases tested in Texas, 10 were found to be drugresistant. Do these data indicate that New Jersey has a statisti

  • Q : Report on Simple Random Sampling with

    One of my friend has a problem on simple random sampling. Can someone provide a complete Report on Simple Random Sampling with or without replacement?

  • Q : Sample z test and Sample t test A

    A random sample X1, X2, …, Xn is from a normal population with mean µ and variance σ2. If σ is unknown, give a 95% confidence interval of the population mean, and interpret it. Discuss the major diff

  • Q : Compare the test results The grade

    The grade point averages of 61 students who completed a college course in financial accounting have a standard deviation of .790. The grade point averages of 17 students who dropped out of the same course have a standard deviation of .940. Do the data indicate a