--%>

competitive equilibrium

8. Halloween is an old American tradition. Kids go out dressed in costume and neighbors give them candy when they come to the door. Spike and Cinderella are brother and sister. After a long night collecting candy, they sit down as examine what they have. Spike finds that he has 40 candy bars and 20 packs of gum. His sister finds she has 30 candy bars and 40 packs of gum. Spike likes candy bars exactly twice as much as gum and would always be willing to trade two packs of gum for one candy bar. Cinderella, on the other hand, likes gum exactly twice as much as candy bars and would always be willing to trade two candy bars for one pack of gum. 

a. Illustrate this situation in an Edgeworth box. Let Spike’s origin be in the lower left, and Cinderella’s be in the upper right hand corner. Put candy bars on the horizontal axis and gum on the vertical. 

b. Now draw in indifference curves for the two agents that reflect the description given above. Indicate the endowment point, and the contract curve. Illustrate a competitive equilibrium. Is there more than one competitive equilibrium? 

#10. Ken McSubstitute and Ron O’Complement were flying to a fast food festival in Fiji when an unexpected storm forced their plane to ditch in the middle of the Pacific. Miraculously, they are washed up on a desert island. Ken finds that he has only 5 slightly wet hamburgers and 15 orders of fries in his pockets. Ron discovers he has 15 hamburgers and 5 orders of fries. Ken only cares about how much he gets to eat. His utility function is: Us(H,F) = H+F. On the other hand, Ron believes that it is uncivilized to eat hamburgers without french fries or french fries without hamburgers. His utility function is: Uc(H,F) = min(H,F). 

a. In an Edgeworth box, show the endowment point, the Pareto Opimal Allocations, and the competitive equilibrium 

b. Is the competitive equilibrium Pareto Optimal? 

   Related Questions in Mathematics

  • Q : Problem on budgeted cash collections

    XYZ Company collects 20% of a month's sales in the month of sale, 70% in the month following sale, and 5% in the second month following sale. The remainder is not collectible. Budgeted sales for the subsequent four months are:     

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Problem on inventory merchandise AB

    AB Department Store expects to generate the following sales figures for the next three months:                            

  • Q : Row-echelon matrix Determine into which

    Determine into which of the following 3 kinds (A), (B) and (C) the matrices (a) to (e) beneath can be categorized:       Type (A): The matrix is in both reduced row-echelon form and row-echelon form. Type (B): The matrix

  • Q : Use MS Excel to do the computations

    Select a dataset of your interest (preferably related to your company/job), containing one variable and atleast 100 data points. [Example: Annual profit figures of 100 companies for the last financial year]. Once you select the data, you should compute 4-5 summary sta

  • Q : Nonlinear integer programming problem

    Explain Nonlinear integer programming problem with an example ?

  • Q : The mean of the sampling distribution

    1. Caterer determines that 87% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000 taken. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?<

  • Q : Mathematical and Theoretical Biology

    Mathematical and theoretical biology is an interdisciplinary scientific research field with a range of applications in the fields of biology, biotechnology, and medicine. The field may be referred to as mathematical biology or biomathematics to stress the mathematical

  • Q : Where would we be without stochastic

    Where would we be without stochastic or Ito^ calculus?

  • Q : Who derived the Black–Scholes Equation

    Who derived the Black–Scholes Equation?