--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Define Joule-Thomson effect or

    Joule-Thomson effect: Joule-Kelvin effect (J.P. Joule, W. Thomson [later Lord Kelvin]): The change in temperature which takes place whenever a gas expands into an area of lower pressure.

  • Q : Define Mach number Mach number (E.

    Mach number (E. Mach): It is the ratio of the speed of an object in a specified medium to the speed of sound in that medium.

  • Q : Explain Chronology protection conjecture

    Chronology protection conjecture (S.W. Hawking): The notion that the formation of any closed time like curve will (automatically) involuntarily be destroyed by the quantum fluctuations as soon as it is made. In another words, the quan

  • Q : Define Zeeman Effect or Zeeman line

    Zeeman Effect: Zeeman line splitting (P. Zeeman; 1896): Zeeman Effect is the splitting of lines in a spectrum whenever the source is exposed to the magnetic field.

  • Q : Define Planck constant Planck constant

    Planck constant: h: The basic constant equivalent to the ratio of the energy of a quantum of energy to its frequency. This is the quantum of action. This has the value 6.626 196 x 10-34 J s.

  • Q : Define Lenzs law Lenz's law (H.F. Lenz;

    Lenz's law (H.F. Lenz; 1835): The induced electric current always flows in such a direction that it resists the change generating it.

  • Q : Explain Rayleigh-Jeans law

    Rayleigh-Jeans law: For a blackbody at the thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by: R = 2 pi nu2 k T/c2.<

  • Q : Define Dirac constant Dirac constant :

    Dirac constant: Planck constant, modified form; hbar Sometimes more suitable form of the Planck constant, stated as: hbar = h/(2 pi)

  • Q : Non-Parametric Tests Activity

    Activity 9:   Non-Parametric Tests    4Non-Parametric Tests While you have learned a number of parametric statistical techniques, you are also aware that if the assumptions related to

  • Q : Describe the term ntu in thermodynamics

    Describe the term ntu in thermodynamics? Illustrate in short.