--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : What is Negative feedback principle

    Negative feedback principle: It is the idea that in a system where there are self-propagating situations, those new situations tend to act against formerly existing situations. Such a principle is in actuality a restatement of the conservation law.

  • Q : Define Faint Faint , young sun paradox

    Faint, young sun paradox: The theories of stellar evolution point out that as stars mature on the main series, they grow gradually hotter and brighter; computations propose that at as regards the time of the formation of Earth, the Su

  • Q : Why tea kettle sing What is the reason

    What is the reason that the tea kettle sing? Briefly state the reason.

  • Q : Development of Missile technology Name

    Name the women scientist who played the essential role in the development of Missile technology of India and is nick named as the ‘Missile Woman’?

  • Q : Describe the applications of the nmr

    Briefly describe the applications of the nmr spectroscopy?

  • Q : What is Ground source Heat Pumps Ground

    Ground source Heat Pumps (GSHP): This technology makes use of the energy stored in the earth’s crust, which comes mainly from solar radiation. Fundamentally, heat pumps take up heat at a certain temperature and discharge it at a higher temperatu

  • Q : Describe the term Specular Reflection

    Describe briefly the term Specular Reflection?

  • Q : Define Hubbles law Hubble's law (E.P.

    Hubble's law (E.P. Hubble; 1925): The relationship discovered between radial velocity and distance. The further away a galaxy is away from is, the quicker it is receding away from us. The constant of proportionality is the Hubble cons

  • Q : What is Eotvos law of capillarity

    Eotvos law of capillarity (Baron L. von Eotvos; c. 1870): The surface tension gamma of a liquid is associated to its temperature T, the liquid's critical temperature, T*, and its density rho by: gamma ~=

  • Q : Explain Coanda effect Coanda effect:

    Coanda effect: The effect which points out that a fluid tends to flow all along a surface, instead of flowing via free space.