--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Define Constancy principle Constancy

    Constancy principle (A. Einstein): One of the postulates of Sir Einstein's special theory of relativity that puts forth that the speed of light in vacuum is computed as similar speed to all observers, in spite of of their relative mot

  • Q : Define Uniformity principle Uniformity

    Uniformity principle (E.P. Hubble): The principle which the laws of physics here and now are not dissimilar, at least qualitatively, from the laws of physics in preceding or future epochs of time, or somewhere else in the Universe. This principle was

  • Q : What is the turnover number of the

    What is the turnover number of the enzyme? Is that forever an evaluation parameter of the action or activity of the enzyme?

  • Q : Explain Event horizon Event horizon:

    Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t

  • Q : Simulation using VMD and NMD programes

    I need the homework to be finished in five days. and could you please tell me if you are familiar with VMD and NMD simulation programs or not? I will send you some docments that I think it could help to solve the homework questions. But please send me an email so I can attached both files. all b

  • Q : Biot-Savart law Biot-Savart law (J.B.

    Biot-Savart law (J.B. Biot, F. Savart) - The law which explains the contributions to the magnetic field by an electric current. This is analogous to the Coulomb's law. Mathematically: dB = (mu0 I)/(4 pi r2) dl cross e

  • Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;

  • Q : Define Trojan points Trojan points : L4

    Trojan points: L4 and L5 are the two dynamically stable Lagrange points (that is, beneath certain conditions).

  • Q : How asteroids are formed Explain how

    Explain how asteroids are formed? Describe.

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.