--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Define Newton or SI unit of force

    Newton: N (after Sir I. Newton, 1642-1727): The derived SI unit of force, stated as the force needed to give a mass of 1 kg of an acceleration of 1 m/s2; it therefore has units of kg m/s2.

  • Q : Define Radian or SI unit of the angular

    Radian: rad: The supplementary SI unit of the angular measure stated as the central angle of a circle whose subtended arc is equivalent to the radius of the circle.

  • Q : What is Geometrized units Geometrized

    Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often.

    Q : Motion balance principle Explain in

    Explain in detail the motion balance principle

  • Q : What is Simultaneity principle

    Simultaneity principle: The principle which all frames of reference will contain invariant simultaneity; that is, the two events perceived as simultaneous (that is, containing the similar time coordinate) in one frame will be apparent as simultaneous

  • Q : What is Gaia hypothesis Gaia hypothesis

    Gaia hypothesis (J. Lovelock, 1969): The thought that the Earth as an entire must be regarded as a living organism and that biological procedures stabilize the atmosphere.

  • Q : What is the turnover number of the

    What is the turnover number of the enzyme? Is that forever an evaluation parameter of the action or activity of the enzyme?

  • Q : Define Volt or SI unit of electric

    Volt: V (after A. Volta, 1745-1827): The derived SI unit of electric potential, stated as the difference of potential among the two points on a conductor fetching  a constant current of 1 A whenever the power dissipated between the points is 1 W;

  • Q : Newtons laws of motion or Newtons

    Explain Newtons laws of motion or Newtons first law, second law and third law of motion? Newton's laws of motion (Sir I. Newton)

    Q : Bragg's law Bragg's law - Whenever a

    Bragg's law - Whenever a beam of x-rays strikes a crystal surface in which the layers of ions or atoms are often separated, the maximum intensity of the reflected ray takes place when the complement of the angle of incidence, theta (θ), the wave