--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : What is Wiens displacement law constant

    Wien's displacement law constant, b: It is the constant of Wien displacement law. This has the value of 2.897 756 x 10-3 m K.

  • Q : Rest mass energy of the electron What

    What do you mean by the rest mass energy of the electron?

  • Q : Define Volt or SI unit of electric

    Volt: V (after A. Volta, 1745-1827): The derived SI unit of electric potential, stated as the difference of potential among the two points on a conductor fetching  a constant current of 1 A whenever the power dissipated between the points is 1 W;

  • Q : What is Hooke law Hooke's law (R.

    Hooke's law (R. Hooke): The stress exerted to any solid is proportional to the strain it generates within the elastic limit for that solid. The constant of that proportionality is the Young modulus of elasticity for that material.

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.

  • Q : Define Pascal or SI unit of pressure

    Pascal: Pa The derived SI unit of pressure stated as 1 N acting over a region of 1 m2; it therefore has units of N/m2

  • Q : Instrument used to measure the volume

    Name the instrument which is used to measure the volume? Explain in short?

  • Q : What is Ground source Heat Pumps Ground

    Ground source Heat Pumps (GSHP): This technology makes use of the energy stored in the earth’s crust, which comes mainly from solar radiation. Fundamentally, heat pumps take up heat at a certain temperature and discharge it at a higher temperatu

  • Q : What are Trojan satellites Trojan

    Trojan satellites: Satellites that orbit a body at one or the other Trojan points associative to a secondary body. There are numerous illustrations of this in our own solar system: a collection of asteroids that orbit in the Trojan points of Jupiter;

  • Q : Define Mach number Mach number (E.

    Mach number (E. Mach): It is the ratio of the speed of an object in a specified medium to the speed of sound in that medium.