--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Define Henry or SI unit of inductance

    Henry: H (after W. Henry, 1775-1836): The derived SI unit of inductance, stated as the inductance of a closed circuit in which the electromotive force of 1 V is generated whenever the electric current differs uniformly at a rate of 1

  • Q : Define Le Chateliers principle Le

    Le Chatelier's principle (H. Le Chatelier; 1888): When a system is in equilibrium, then any modification imposed on the system tends to shift the equilibrium state to decrease the consequence of that applied change.

  • Q : Explain Archimedes' principle What is 

    What is Archimedes' principle? A body which is submerged in a fluid is buoyed up by a force equivalent in magnitude to the weight of the fluid which is displaced, and directed upward all along a line via the c

  • Q : Explain Coulombs law Coulomb's law (C.

    Coulomb's law (C. de Coulomb): The basic law for electrostatics, equivalent to Newton's law of universal gravitation. It defines that the force between two point charges is proportional to the arithmetical product of their respective

  • Q : Define Superconductivity

    Superconductivity: The phenomenon by which, at adequately low temperatures, a conductor can conduct the charge with zero (0) resistance. The current theory for describing superconductivity is the BCS theory.

  • Q : Why Cadmium rods are given in a nuclear

    Cadmium rods are given in a nuclear reactor. Explain why?

  • Q : Define Mach number Mach number (E.

    Mach number (E. Mach): It is the ratio of the speed of an object in a specified medium to the speed of sound in that medium.

  • Q : Explain Ideal gas equation Ideal gas

    Ideal gas equation: The equation that sums up the ideal gas laws in one simple equation, P V = n R T, Here V is the volume, P is the pressure, n is the

  • Q : Explain Boyle's law Boyle's law (R.

    Boyle's law (R. Boyle; 1662); Mariotte's law (E. Mariotte; 1676) - The product result of the volume and pressure of an ideal gas at constant (steady) temperature is constant.

  • Q : Define Charles law Charles' law (J.A.C.

    Charles' law (J.A.C. Charles; c. 1787): The volume of an ideal gas at constant (steady) pressure is proportional to the thermodynamic temperature of that gas.