--%>

changes in matter law of chemical combination

changes in matter law of chemical combination

   Related Questions in Chemistry

  • Q : Problem based on molarity Choose the

    Choose the right answer from following. The molarity of a solution of Na2CO3 having 10.6g/500ml of solution is : (a) 0.2M (b)2M (c)20M (d) 0.02M

  • Q : Calculating density of water using

    What is the percent error in calculating the density of water using the ideal gas law for the following conditions:  a. 110 oC, 1 bar   b. 210 oC 10 bar  c. 374 o

  • Q : Organic structure of cetearyl alcohol

    Can we demonstration the organic structure of cetearyl alcohol and state me what organic family it is?

  • Q : Problem on bubble point The following

    The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery.

    Q : Which solution will have highest

    Which solution will have highest boiling point:(a) 1% solution of glucose in water  (b) 1% solution of sodium chloride in water  (c) 1% solution of zinc sulphate in water  (d) 1% solution of urea in waterAnswer: (b) Na

  • Q : Show your calculations Superphosphate

    Superphosphate has the formulae: CaH4 (PO4)2H2).  Calculate the percentage of phosphorus in this chemical.  Show your calculations  (around ten lines);  also Work out how to make up a nutrient mixtur

  • Q : P block bif3 is ionic while other

    bif3 is ionic while other trihalides are covalent in nature

  • Q : 6. 20 gm of hydrogen is present in 5

    6. 20 gm of hydrogen is present in 5 litre vessel. The molar concentration of hydrogen is

  • Q : Explain Ionic Bond with examples. The

    The bonding in ionic molecules can be described with a coulombic attractive term.For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulom

  • Q : What is heat capacity and how to

    The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure. The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the