--%>

calculate the intensity I along y axis

As shown in the figure below, a source at S is sending out a spherical wave:

E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source S. In addition, there is another plane wave propagating along x axis: E2=Acos(wt-2πx/λ). 

These two waves both projected on a vertical screen as shown in the figure. Please calculate the intensity I along y axis (I should be a function of y, the distance from x axis). D is the distance between the screen and the source.

 

381_optics.png

Hint: For a wave E=E0cos (wt + q), I = 2 = E02. Also r = (D2 + y2)1/2.

For k<<1,  (1+k2)1/2» 1+k2/2.   cosA+cosB = 2cos[(A+B)/2] cos[(A-B)/2]

   Related Questions in Physics

  • Q : How radiation emitted from the body

    Describe the procedure how radiation emitted from the body? Illustrate in brief.

  • Q : Explain Thomson experiment or Kelvin

    Thomson experiment: Kelvin effect (Sir W. Thomson [later Lord Kelvin]): Whenever an electric current flows via a conductor whose ends are maintained at various temperatures, heat is discharged at a rate just about proportional to the

  • Q : Faradays laws of electromagnetic

    Explain Faraday's laws of electromagnetic induction and explain Faraday's first, second and third law of electromagnetic induction? Faraday's laws of electromagnetic in

  • Q : What do you mean by the term positron

    What do you mean by the term positron? Explain in short.

  • Q : What is Standard quantum limit Standard

    Standard quantum limit: It is the limit obligatory on standard techniques of measurement by the uncertainty principle in quantum mechanics.

  • Q : Gas encompass density or not Explain in

    Explain in brief that the gas encompass density or not?

  • Q : What is Farad or SI unit of capacitance

    What is Farad or SI unit of capacitance? Farad: F (after M. Faraday, 1791-1867): The derived SI unit of the capacitance stated as the capacitance in a capacitor that, when charged to 1 C, contains

  • Q : Secondary electron image and back

    What is main difference between secondary electron image and the back scattered electron image? State briefly.

  • Q : Define Volt or SI unit of electric

    Volt: V (after A. Volta, 1745-1827): The derived SI unit of electric potential, stated as the difference of potential among the two points on a conductor fetching  a constant current of 1 A whenever the power dissipated between the points is 1 W;

  • Q : Explain Tachyon paradox Tachyon

    Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero e