--%>

calculate the intensity I along y axis

As shown in the figure below, a source at S is sending out a spherical wave:

E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source S. In addition, there is another plane wave propagating along x axis: E2=Acos(wt-2πx/λ). 

These two waves both projected on a vertical screen as shown in the figure. Please calculate the intensity I along y axis (I should be a function of y, the distance from x axis). D is the distance between the screen and the source.

 

381_optics.png

Hint: For a wave E=E0cos (wt + q), I = 2 = E02. Also r = (D2 + y2)1/2.

For k<<1,  (1+k2)1/2» 1+k2/2.   cosA+cosB = 2cos[(A+B)/2] cos[(A-B)/2]

   Related Questions in Physics

  • Q : Explain Cosmological constant

    Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been aro

  • Q : What is Lyman series Lyman series: The

    Lyman series: The sequence that explains the emission spectrum of hydrogen whenever electrons are jumping to the ground state. Each and every line is in the ultraviolet.

  • Q : Explain Coulombs law Coulomb's law (C.

    Coulomb's law (C. de Coulomb): The basic law for electrostatics, equivalent to Newton's law of universal gravitation. It defines that the force between two point charges is proportional to the arithmetical product of their respective

  • Q : How asteroids are formed Explain how

    Explain how asteroids are formed? Describe.

  • Q : What is Bode's law Bode's law :

    Bode's law: Titius-Bode law - The mathematical formula that generates, with a fair quantity of accuracy, the semi major axes of the planets in out of order from the Sun. Write down the progression 0, 3, 6, 12, 24,

  • Q : Radioactive dating-Determining of age

    In the radioactive dating we use half life to find out the age of a sample however not average life why? Describe.

  • Q : Define Uniformity principle Uniformity

    Uniformity principle (E.P. Hubble): The principle which the laws of physics here and now are not dissimilar, at least qualitatively, from the laws of physics in preceding or future epochs of time, or somewhere else in the Universe. This principle was

  • Q : What is Bernoulli's equation

    Bernoulli's equation - In an ir-rotational fluid, the sum of static pressure, the weight of the fluid per unit mass times the height and half of the density times the velocity squared is steady all through the fluid 

  • Q : What is Simultaneity principle

    Simultaneity principle: The principle which all frames of reference will contain invariant simultaneity; that is, the two events perceived as simultaneous (that is, containing the similar time coordinate) in one frame will be apparent as simultaneous

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.