Brief note on the classification of Alloys
Write down a brief note on the classification of Alloys?
Expert
Alloys can be categorized by the number of their components. The alloy with two components is termed as binary alloy; one with three is termed as ternary alloy and so on. Alloys can be further categorized as either substitution or interstitial alloys, depending on their process of formation. In substitution alloys, the atoms of components are around of similar size and the different atoms are simply replaced for one another in the crystal structure. An illustration of a binary substitution alloy is brass, which is made up of copper and zinc. Interstitial alloys take place whenever the atoms of one component are substantially smaller than the other and the smaller atoms fit to the spaces (or interstices) among the bigger atoms.
Ultraviolet catastrophe: It is the shortcoming of Rayleigh-Jeans formula that attempted to explain the radiance of a blackbody at different frequencies of the electromagnetic spectrum. This was clearly wrong since as the frequency rose, the radiance r
Does water drain contradict clockwise in the northern hemisphere and clockwise in the southern hemi-sphere? Briefly explain it.
Metre: meter; m: The basic SI unit of length, stated as the length of the path traveled by light in vacuum throughout a period of 1/299 792 458 s.
Siemens: S (after E.W. von Siemens, 1816-1892): The derived SI unit of an electrical conductance equivalent to the conductance of an element which has a resistance of 1 O [ohm]; this has units of O-1.
Explain Thermodynamic laws and also First law, Second law, third law and zeroth law of thermodynamics? Thermodynamic laws: Q : Explain Stefan-Boltzmann law Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const
Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const
Lenz's law (H.F. Lenz; 1835): The induced electric current always flows in such a direction that it resists the change generating it.
Hooke's law (R. Hooke): The stress exerted to any solid is proportional to the strain it generates within the elastic limit for that solid. The constant of that proportionality is the Young modulus of elasticity for that material.
Magnus effect: The rotating cylinder in a moving fluid drags a few of the fluid about with it, in its direction of rotation. This raises the speed in that area, and therefore the pressure is lower. Therefore, there is a total force on the cylinder in
Boltzmann constant: k (L. Boltzmann) - The constant that explains the relationship between kinetic energy and temperature for molecules in an ideal gas. This is equivalent to the 1.380 622 x 10-23 J/K.
18,76,764
1957192 Asked
3,689
Active Tutors
1443925
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!