--%>

Bell's inequality

Bell's inequality (J.S. Bell; 1964) - The quantum mechanical theorem that explains that if the quantum mechanics were to rely on the hidden variables, it should have non-local properties.

 

 

   Related Questions in Physics

  • Q : What is basic SI unit of electric

    basic SI unit of electric current is termed as Ampere: A (after A.M. Ampere, 1775-1836) The basic SI unit of electric current, stated as the current that, when going via two infinitely-long parallel conductors of v

  • Q : Explain Michelson-Morley experiment

    Michelson-Morley experiment (A.A. Michelson, E.W. Morley; 1887): Probably the most famous null-experiment of all time, designed to confirm the existence of the proposed "lumeniferous aether" via which light waves were considered to pr

  • Q : Explain Planck radiation law Planck

    Planck radiation law: The law which explained blackbody radiation better than its precursor, therefore resolving the ultraviolet catastrophe. This is based on the supposition that electromagnetic radiation is quantized.

    Q : What is Hubble constant Hubble constant

    Hubble constant: H0 (E.P. Hubble; 1925): The constant that determines the relationship among the distance to a galaxy and its velocity of recession due to the growth of the Universe. As the Universe is self-gravitating, it is not trut

  • Q : Explain Null experiment Null

    Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result),

  • Q : Define Parsec Parsec : The unit of

    Parsec: The unit of distance stated as the distance pointed by an Earth-orbit parallax of 1 arcsec. It equals around 206 264 au, or about 3.086 x 1016 m

  • Q : What is Coriolis pseudoforce Coriolis

    Coriolis pseudoforce (G. de Coriolis; 1835): The pseudoforce that arises since of motion relative to a frame that is itself rotating relative to the second, inertial frame. The magnitude of the Coriolis "force" is tot

  • Q : Define Josephson effects Josephson

    Josephson effects (B.D. Josephson; 1962): Electrical effects examined whenever two superconducting materials are separated by a thin layer of the insulating substance.

  • Q : Define Gauss law Gauss' law (K.F.

    Gauss' law (K.F. Gauss): The electric flux via a closed surface is proportional to the arithmetical sum of electric charges contained in that closed surface; in its differential form, div E = rho,

  • Q : Define Planck equation Planck equation:

    Planck equation: The quantum mechanical equation associating to the energy of a photon E to its frequency nu: E = h nu.