--%>

Bayesian Point Estimation

What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

E

Expert

Verified

Bayesian Point Estimation:

A) Bayesian Statistics is one way of incorporating prior information about a parameter into the estimation process.

B) Adherents claim that this helps to make the estimation more relevant to the scienti c problem at hand.

C) Opponents counter that it makes statistical inference subjective.

D) The underlying principle of Bayesian statistics also di ers from the more common Frequentist inference that we have covered to date.

E) In Bayesian statistics, all unknown quantities are considered random variables.

F) Thus the parameters of a distribution are now considered random.

G) The usual model is then considered to be a conditional distribution of the data given the parameters.

H) Since the parameter vector θ is considered random it also has a distribution.

I) The marginal distribution of θ is called the Prior Distribution.

J) The prior distribution is supposed to capture our beliefs about θ before the collection of data.

The process of inference in Bayesian statistics is as follows.

1. Specify a conditional distribution of the data given the parameters. This is identical to the usual model speci cation in frequentist statistics.

2. Specify the prior distribution of the model parameters Π(θ).

3. Collect the data, X = x.

4. Update the prior distribution based on the data observed to give a Posterior Distribution of the parameters given the observed data x, Π(θ|x).

5. All inference is then based on this posterior distribution.

   Related Questions in Advanced Statistics

  • Q : Random variables Random variables with

    Random variables with zero correlation are not necessarily independent. Give a simple example.    

  • Q : Components of time series Name and

    Name and elaborate the four components of time series in brief.

  • Q : Frequency Distributions Define the term

    Define the term Frequency Distributions?

  • Q : Conclusion using p-value and critical

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evid

  • Q : Calculate corresponding t value or s

    1)    Construct a 99% confidence interval for the population mean µ.   2)    At what significance level do the data provide good evidence that the average body temperature is

  • Q : Problem on layout A manufacturing

    A manufacturing facility consists of five departments, 1, 2, 3, 4, and 5. It produces four components having manufacturing product routings and production volumes indicated below.   1. Generate the from-to matrix and the interaction matrix. Use a

  • Q : Problem on Poisson distribution The

    The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Probability problem A) What is the

    A) What is the probability of getting the following sequence with a fair die (as in dice):B) What is the probability of getting the same sequence with a die that is biased in the following way: p(1)=p(2)=p(3)=p(4)=15%;

  • Q : Discrete and continuous data

    Distinguish between discrete and continuous data in brief.