--%>

Bayesian Point Estimation

What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

E

Expert

Verified

Bayesian Point Estimation:

A) Bayesian Statistics is one way of incorporating prior information about a parameter into the estimation process.

B) Adherents claim that this helps to make the estimation more relevant to the scienti c problem at hand.

C) Opponents counter that it makes statistical inference subjective.

D) The underlying principle of Bayesian statistics also di ers from the more common Frequentist inference that we have covered to date.

E) In Bayesian statistics, all unknown quantities are considered random variables.

F) Thus the parameters of a distribution are now considered random.

G) The usual model is then considered to be a conditional distribution of the data given the parameters.

H) Since the parameter vector θ is considered random it also has a distribution.

I) The marginal distribution of θ is called the Prior Distribution.

J) The prior distribution is supposed to capture our beliefs about θ before the collection of data.

The process of inference in Bayesian statistics is as follows.

1. Specify a conditional distribution of the data given the parameters. This is identical to the usual model speci cation in frequentist statistics.

2. Specify the prior distribution of the model parameters Π(θ).

3. Collect the data, X = x.

4. Update the prior distribution based on the data observed to give a Posterior Distribution of the parameters given the observed data x, Π(θ|x).

5. All inference is then based on this posterior distribution.

   Related Questions in Advanced Statistics

  • Q : Calculate confidence interval A nurse

    A nurse anesthetist was experimenting with the use of nitronox as an anesthetic in the treatment of children's fractures of the arm.  She treated 50 children and found that the mean treatment time (in minutes) was 26.26 minutes with a sample standard deviation of

  • Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : Pearsons correlation coefficient The

    The table below illustrates the relationship between two variable X and Y. A

  • Q : Analyse the statistics of the data

    Assigment Question Select any two manufacturing companies and formulate the cost and revenue functions of the companies. analyse the statistics of the data and then sketch the functions and determine their breakeven points. (Note: You are required to interview the production and sales manag

  • Q : Random variables Random variables with

    Random variables with zero correlation are not necessarily independent. Give a simple example.    

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Grouped Frequency Distributions Grouped

    Grouped Frequency Distributions: Guidelines for classes: A) There must be between 5 to 20 classes. B) The class width must be an odd number. This will assure that the class mid-points are integers rather than decimals. C) The classes should be mutually exclusive. This signifies that no data valu

  • Q : Problem on layout A manufacturing

    A manufacturing facility consists of five departments, 1, 2, 3, 4, and 5. It produces four components having manufacturing product routings and production volumes indicated below.   1. Generate the from-to matrix and the interaction matrix. Use a

  • Q : Conclusion using p-value and critical

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evid

  • Q : Describe how random sampling serves

    Explain sampling bias and describe how random sampling serves to avoid bias in the process of data collection.