--%>

Bayesian Point Estimation

What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

E

Expert

Verified

Bayesian Point Estimation:

A) Bayesian Statistics is one way of incorporating prior information about a parameter into the estimation process.

B) Adherents claim that this helps to make the estimation more relevant to the scienti c problem at hand.

C) Opponents counter that it makes statistical inference subjective.

D) The underlying principle of Bayesian statistics also di ers from the more common Frequentist inference that we have covered to date.

E) In Bayesian statistics, all unknown quantities are considered random variables.

F) Thus the parameters of a distribution are now considered random.

G) The usual model is then considered to be a conditional distribution of the data given the parameters.

H) Since the parameter vector θ is considered random it also has a distribution.

I) The marginal distribution of θ is called the Prior Distribution.

J) The prior distribution is supposed to capture our beliefs about θ before the collection of data.

The process of inference in Bayesian statistics is as follows.

1. Specify a conditional distribution of the data given the parameters. This is identical to the usual model speci cation in frequentist statistics.

2. Specify the prior distribution of the model parameters Π(θ).

3. Collect the data, X = x.

4. Update the prior distribution based on the data observed to give a Posterior Distribution of the parameters given the observed data x, Π(θ|x).

5. All inference is then based on this posterior distribution.

   Related Questions in Advanced Statistics

  • Q : Correlation Define the term Correlation

    Define the term Correlation and describe Correlation formula in brief.

  • Q : Probability and Statistics

    Instructions: Do your work on this question and answer sheet. Please print or write legibly, and, as always, be complete but succinct. Record your answer and your supporting work in the designated space. Explain your method of solution and be sure to label clearly any

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : True and False Statement Discuss the

    Discuss the following statements and explain why they are true or false: a)      Increasing the number of predictor variables will never decrease the R2 b)      Multicollinearity affects the int

  • Q : Problem on consumers marginal utility

    Consider a consumer with probability p of becoming sick.  Let Is be the consumer’s income if he becomes sick, and let Ins be his income if he does not become sick, with Is < Ins. Suppo

  • Q : Probability of Rolling die problem A

    A fair die is rolled (independently) 12 times. (a) Let X denote the total number of 1’s in 12 rolls. Find the expected value and variance of X. (b) Determine the probability of obtaining e

  • Q : Probability problem A) What is the

    A) What is the probability of getting the following sequence with a fair die (as in dice):B) What is the probability of getting the same sequence with a die that is biased in the following way: p(1)=p(2)=p(3)=p(4)=15%;

  • Q : Describe how random sampling serves

    Explain sampling bias and describe how random sampling serves to avoid bias in the process of data collection.    

  • Q : Use the law of iterated expectation to

    Suppose we have a stick of length L. We break it once at some point X _

    Q : Conclusion using p-value and critical

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evid