--%>

Bayesian Point Estimation

What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

E

Expert

Verified

Bayesian Point Estimation:

A) Bayesian Statistics is one way of incorporating prior information about a parameter into the estimation process.

B) Adherents claim that this helps to make the estimation more relevant to the scienti c problem at hand.

C) Opponents counter that it makes statistical inference subjective.

D) The underlying principle of Bayesian statistics also di ers from the more common Frequentist inference that we have covered to date.

E) In Bayesian statistics, all unknown quantities are considered random variables.

F) Thus the parameters of a distribution are now considered random.

G) The usual model is then considered to be a conditional distribution of the data given the parameters.

H) Since the parameter vector θ is considered random it also has a distribution.

I) The marginal distribution of θ is called the Prior Distribution.

J) The prior distribution is supposed to capture our beliefs about θ before the collection of data.

The process of inference in Bayesian statistics is as follows.

1. Specify a conditional distribution of the data given the parameters. This is identical to the usual model speci cation in frequentist statistics.

2. Specify the prior distribution of the model parameters Π(θ).

3. Collect the data, X = x.

4. Update the prior distribution based on the data observed to give a Posterior Distribution of the parameters given the observed data x, Π(θ|x).

5. All inference is then based on this posterior distribution.

   Related Questions in Advanced Statistics

  • Q : Statistics A nurse practitioner working

    A nurse practitioner working in a dermatology clinic is studying the efficacy of tretinoin in treating women’s post partum abdominal stretch marks. From a sample of 15 women, the mean reduction of stretch mark score is -0.33 with a sample standard deviation of 2.46. Describe what happens to the c

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Statistics Homework with SAS File is

    File is attached, need it by 8:30 AM Pacific (Seattle, WA) time. No delay acceptable. Need it March 25, 2014 on 8:30 AM Pacific time.

  • Q : Describe how random sampling serves

    Explain sampling bias and describe how random sampling serves to avoid bias in the process of data collection.    

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Probability of winning game Monte Carlo

    Monte Carlo Simulation for Determining Probabilities 1. Determining the probability of winning at the game of craps is difficult to solve analytically. We will assume you are playing the `Pass Line.'  So here is how the game is played: The shooter rolls a pair of

  • Q : Random variables Random variables with

    Random variables with zero correlation are not necessarily independent. Give a simple example.    

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : Problem on consumers marginal utility

    Consider a consumer with probability p of becoming sick.  Let Is be the consumer’s income if he becomes sick, and let Ins be his income if he does not become sick, with Is < Ins. Suppo