--%>

Avogadro's hypothesis Law Principle

Avogadro's hypothesis Law Principle- Berzelius, a chemist tried to correlate Dalton's atomic theory & Gay-Lussac's Law of gaseous volumes. According to his Berzelius hypothesis Equal volumes of all gases under similar conditions of temperature & pressure contain equal number of atoms e.g.

Hydrogen (1 vol) + Chlorine (1 vol)->HCl (2 vol)

Acc to Berzelius hypothesis:

Hydrogen (1/2 atom) + Chlorine (1/2 atom)->HCl (1 compound atom)

But this is indirect conflict of Dalton's atomic theory, so it was rejected.

So a new hypothesis was given by Avogardo.

According to him, An atom is a smallest particle of an element which can take part in a chemical reaction which may or may not be capable of independent existence.

molecule is the smallest particle of an element or of a compound which have an independent existence. So the smallest particle of a gas is a molecule not an atom, so the volume of gas must be related to the number of molecules rather than atoms.

According to Avogrado's Hypothesis-Equal volume of all gases under similar conditions of temperature & pressure contain equal number of molecules. This is able to explain all the gaseous reactions & now known as Avogrado's Law or Avogrado's principle.

For example-

Hydrogen (1 vol) + Chlorine (1 vol)->HCl (2 vol)

By Avogrado's hypothesis:

n molecule+n molecule gives 2n molecule

1/2molecule of both [Hydrogen + Chlorine] ->HCl (1 molecule)

 Applications of this hypothesis-

(1)In the calculation of atomicity of elementary gases-Atomicity is defined as the number of atoms of the element present in one molecule of the substance e.g. atomicity of N2 is two & O3 is three.

(2)To find the relationship between molecular mass & vapour density of gas-(relative density)

Vapour density of gas=Density of gas/density of hydrogen

           =Mass of [certain vol of gas/same volume of H2] at STP

            =Mass of [n molecule of gas/ n molecule of H2] at STP

            =Mass of [1 molecule of gas/ 1 molecule of H2] at STP

 

                          Vapour density=Molecular Mass/2

(3)To find the relationship between mass & volume of gas-As the

Molecular Mass=Vapour density x 2

Or Molecular Mass=Mass of 22.4 L of gas at STP

Thus 22.4 L of any gas at STP weight is equal to the molecular mass of the gas expressed in grams which is called Gram-Molecular Volume Law (G.M.V.).

   Related Questions in Chemistry

  • Q : Strength of the Hydrochloric acid

    Provide solution of this question. 1.0 gm of pure calcium carbonate was found to need 50 ml of dilute HCL for complete reaction. The strength of the HCL solution is specified by : (a) 4 N (b) 2 N (c) 0.4 N (d) 0.2 N

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Number of moles of potassium chloride

    Choose the right answer from following. The number of moles of KCL in 1000ml of 3 molar solution is: (a)1 (b)2 (c)3 (d)1.5

  • Q : Describe properties of carboxylic acids.

    1. Physical state: the first three aliphatic acids are colourless liquids with pungent smell. The next six are oily liquids with an odour of rancid butter while the higher members are colourless, odourless waxy solids. Benzoic acid is referred to

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti

  • Q : Molarity 20mol of hcl solution requires

    20mol of hcl solution requires 19.85ml of 0.01 M NAOH solution for complete neutralisation. the molarity of hcl solution

  • Q : Problem associated to vapour pressure

    Provide solution of this question. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P0 , the vapour pressure of solution is:(a) 0.10P0 (b) 1.10P0 (c) 0.90P0 (d) 0.99P0

  • Q : Problem on vapour pressure and mole

    Provide solution of this question. The vapour pressure of a solvent decreased by 10 mm of mercury, when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the mole fraction of the solvent, if decrea

  • Q : Molecular Diameters The excluded volume

    The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values