--%>

Avogadro's hypothesis Law Principle

Avogadro's hypothesis Law Principle- Berzelius, a chemist tried to correlate Dalton's atomic theory & Gay-Lussac's Law of gaseous volumes. According to his Berzelius hypothesis Equal volumes of all gases under similar conditions of temperature & pressure contain equal number of atoms e.g.

Hydrogen (1 vol) + Chlorine (1 vol)->HCl (2 vol)

Acc to Berzelius hypothesis:

Hydrogen (1/2 atom) + Chlorine (1/2 atom)->HCl (1 compound atom)

But this is indirect conflict of Dalton's atomic theory, so it was rejected.

So a new hypothesis was given by Avogardo.

According to him, An atom is a smallest particle of an element which can take part in a chemical reaction which may or may not be capable of independent existence.

molecule is the smallest particle of an element or of a compound which have an independent existence. So the smallest particle of a gas is a molecule not an atom, so the volume of gas must be related to the number of molecules rather than atoms.

According to Avogrado's Hypothesis-Equal volume of all gases under similar conditions of temperature & pressure contain equal number of molecules. This is able to explain all the gaseous reactions & now known as Avogrado's Law or Avogrado's principle.

For example-

Hydrogen (1 vol) + Chlorine (1 vol)->HCl (2 vol)

By Avogrado's hypothesis:

n molecule+n molecule gives 2n molecule

1/2molecule of both [Hydrogen + Chlorine] ->HCl (1 molecule)

 Applications of this hypothesis-

(1)In the calculation of atomicity of elementary gases-Atomicity is defined as the number of atoms of the element present in one molecule of the substance e.g. atomicity of N2 is two & O3 is three.

(2)To find the relationship between molecular mass & vapour density of gas-(relative density)

Vapour density of gas=Density of gas/density of hydrogen

           =Mass of [certain vol of gas/same volume of H2] at STP

            =Mass of [n molecule of gas/ n molecule of H2] at STP

            =Mass of [1 molecule of gas/ 1 molecule of H2] at STP

 

                          Vapour density=Molecular Mass/2

(3)To find the relationship between mass & volume of gas-As the

Molecular Mass=Vapour density x 2

Or Molecular Mass=Mass of 22.4 L of gas at STP

Thus 22.4 L of any gas at STP weight is equal to the molecular mass of the gas expressed in grams which is called Gram-Molecular Volume Law (G.M.V.).

   Related Questions in Chemistry

  • Q : Liquid surfaces The surface between a

    The surface between a liquid and a vapour distinguishes these fluids. The surface tension of liquids can be looked upon as that the property which draws a liquid together and forms a liquid vapour interface, therefore, distinguishing liquids from gases.<

  • Q : Problem on MM equation How to obtain

    How to obtain relation between Vm and Km,given k(sec^-1) = Vmax/mg of enzyme x molecular weight x 1min/60 sec S* = 4.576(log K -10.753-logT+Ea/4.576T).

  • Q : Problem on Molar solution Can someone

    Can someone please help me in getting through this problem. 2.0 molar solution is acquired, when 0.5 mole solute is dissolved in: (i) 250 ml solvent (ii) 250 g solvent (iii) 250 ml solution (iv) 1000 ml solvent

  • Q : Ddd 4) The addition of S2- ion to

    4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s).

  • Q : Problem on vapour pressure and mole

    Provide solution of this question. The vapour pressure of a solvent decreased by 10 mm of mercury, when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the mole fraction of the solvent, if decrea

  • Q : Explain the preparation of phenols. The

    The methods used for the preparation of phenols are given below:    From aryl sulphonic acids

  • Q : Eutectic Formation In some two

    In some two component, solid liquid systems, a eutectic mixture forms.Consider, now a two component system at some fixed pressure, where the temperature range treated is such as to include formation of one or more solid phases. A simple behavior is shown b

  • Q : Explain oxygen and its preparation.

    Karl Scheele, the Swedish chemist, was

  • Q : Electrochemistry ( electrolysis of

    1. Define Faraday's first law of electrolysis 2. define Faraday's second law of electrolysis

  • Q : Calculating number of moles from

    Choose the right answer from following. If 0.50 mol of CaCl2 is mixed with 0.20 mol of Na3PO4, the maximum number of moles of Ca3 (PO2)2 which can be formed: (a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10