--%>

Acceleration during this interval

The velocity of a body was observed to be constant throughout five minutes of its motion. Determine its acceleration during this interval?

E

Expert

Verified

As the velocity of body remains constant throughout the given time period, therefore difference of velocity (that is, constant) with respect to time will be (0) ZERO.

   Related Questions in Physics

  • Q : Radioactive dating-Determining of age

    In the radioactive dating we use half life to find out the age of a sample however not average life why? Describe.

  • Q : Explain Gauss law for magnetic fields

    Gauss' law for magnetic fields (K.F. Gauss): The magnetic flux via a closed surface is zero (0); no magnetic charges present; in its differential form, div B = 0

  • Q : What is Magnus effect Magnus effect :

    Magnus effect: The rotating cylinder in a moving fluid drags a few of the fluid about with it, in its direction of rotation. This raises the speed in that area, and therefore the pressure is lower. Therefore, there is a total force on the cylinder in

  • Q : Ampere's law Explain  Ampere's law?  

    Explain Ampere's law?   Ampere's law (A.M. Ampere):

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Problem on spacecraft Assuming that

    Assuming that ground stations are equally distributed on the Earth, how many ground stations are required to maintain constant contact with a spacecraft at 750 km altitude, and 72 degrees inclination?

  • Q : Kirchhoffs rules or Loop rule or Point

    Explain Kirchhoff's rules or Kirchhoff's Loop rule and Point rule? Kirchhoff's rules (G.R. Kirchhoff) <

  • Q : What is Laplace equation Laplace

    Laplace equation (P. Laplace): For the steady-state heat conduction in 1-dimension, the temperature distribution is the explanation to Laplace's equation, which defines that the second derivative of temperature with respect to displac

  • Q : Characteristics of electronics what is

    what is the characteristics of electronics ?

  • Q : Explain Uncertainty principle

    Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be r