--%>

Abstract Boolean Algebra

I. Boolean Algebra

Define an abstract Boolean Algebra, B,  as follows:

 The three operations are:

 +   ( x + y addition)

  • ( x y multiplication)~

˜ ( ˜ x  the complement  or the negation of x)

{B, + , 0 } is a commutative monoid

1. State the commutative law of addition: ___________________________________________

2. State the associative law of addition: _____________________________________________

3. State the law that says 0 is an additive identity __________________________________

{B, • , 1 } is a commutative monoid

4. State the commutative law of multiplication: ____________________________________

5. State the associative law of multiplication: _______________________________________

6. State the law that says 1 is a multiplicative identity _____________________________

7. State the distributive law of multiplication: ______________________________________

8. State the distributive law of addition: _____________________________________________

Finally  it is given that:

9.   x  +  ˜ x  = 1

10. x  •  ˜ x  = 0

The above ten properties are necessary and sufficient conditions to prove a given algebra is a Boolean algebra.

For a Boolean Algebra prove the idempotent properties:

1.  x  •  x  = x 

2.  x  +  x  = x 

For a Boolean Algebra prove the Zero and One Properties:

3.  0  •  x  = 0 

4.  1  +  x  = 1  

Prove the four Absorption Laws for a Boolean Algebra:

5.  x + (x  • y) = x 

6.  x  • ( x +  y) = x  

7.  x  +  (˜x • y) = x + y 

8.  x  • ( ˜x +  y) = x  •  y 

9. Prove that if the element y acts as the additive complement of x, i.e. x + y = 1, and y acts as the multiplicative complement of x, i.e. x•y = 0, then in fact x is the complement of y, i.e.  y =  ˜x.

Note.  The Involution Law:  ˜ ˜x = x, is true, by the fact of the uniqueness of the complement (see 9. above) and the fact that x acts as the complement of ˜x . 

Prove the following De Morgan Laws (Hint:  use the uniqueness of the complement)

10.  ˜ ( x + y ) = (˜x)  • (˜y)

11.  ˜ ( x + y ) = (˜x)  • (˜y)

   Related Questions in Mathematics

  • Q : Problem on Nash equilibrium In a

    In a project, employee and boss are working altogether. The employee can be sincere or insincere, and the Boss can either reward or penalize. The employee gets no benefit for being sincere but gets utility for being insincere (30), for getting rewarded (10) and for be

  • Q : Statistics math Detailed explanation of

    Detailed explanation of requirements for Part C-1 The assignment states the following requirement for Part 1, which is due at the end of Week 4: “Choose a topic from your field of study. Keep in mind you will need to collect at least [sic] 3- points of data for this project. Construct the sheet y

  • Q : Linear programming model of a Cabinet

    A cabinet company produces cabinets used in mobile and motor homes. Cabinets produced for motor homes are smaller and made from less expensive materials than those for mobile homes. The home office in Dayton Ohio has just distributed to its individual manufacturing ce

  • Q : Statistics Caterer determines that 37%

    Caterer determines that 37% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?

  • Q : Breakfast program if the average is

    if the average is 0.27 and we have $500 how much break fastest will we serve by 2 weeks

  • Q : How to get calculus homework done from

    How to get calculus homework done from tutor

  • Q : Explain a rigorous theory for Brownian

    Explain a rigorous theory for Brownian motion developed by Wiener Norbert.

  • Q : Theorem-Group is unique and has unique

    Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proce

  • Q : State Fermat algorithm The basic Fermat

    The basic Fermat algorithm is as follows: Assume that n is an odd positive integer. Set c = [√n] (`ceiling of √n '). Then we consider in turn the numbers c2 - n; (c+1)2 - n; (c+2)2 - n..... until a perfect square is found. If th

  • Q : Define terms Terms : Terms are defined

    Terms: Terms are defined inductively by the following clauses.               (i) Every individual variable and every individual constant is a term. (Such a term is called atom