--%>

Abstract Boolean Algebra

I. Boolean Algebra

Define an abstract Boolean Algebra, B,  as follows:

 The three operations are:

 +   ( x + y addition)

  • ( x y multiplication)~

˜ ( ˜ x  the complement  or the negation of x)

{B, + , 0 } is a commutative monoid

1. State the commutative law of addition: ___________________________________________

2. State the associative law of addition: _____________________________________________

3. State the law that says 0 is an additive identity __________________________________

{B, • , 1 } is a commutative monoid

4. State the commutative law of multiplication: ____________________________________

5. State the associative law of multiplication: _______________________________________

6. State the law that says 1 is a multiplicative identity _____________________________

7. State the distributive law of multiplication: ______________________________________

8. State the distributive law of addition: _____________________________________________

Finally  it is given that:

9.   x  +  ˜ x  = 1

10. x  •  ˜ x  = 0

The above ten properties are necessary and sufficient conditions to prove a given algebra is a Boolean algebra.

For a Boolean Algebra prove the idempotent properties:

1.  x  •  x  = x 

2.  x  +  x  = x 

For a Boolean Algebra prove the Zero and One Properties:

3.  0  •  x  = 0 

4.  1  +  x  = 1  

Prove the four Absorption Laws for a Boolean Algebra:

5.  x + (x  • y) = x 

6.  x  • ( x +  y) = x  

7.  x  +  (˜x • y) = x + y 

8.  x  • ( ˜x +  y) = x  •  y 

9. Prove that if the element y acts as the additive complement of x, i.e. x + y = 1, and y acts as the multiplicative complement of x, i.e. x•y = 0, then in fact x is the complement of y, i.e.  y =  ˜x.

Note.  The Involution Law:  ˜ ˜x = x, is true, by the fact of the uniqueness of the complement (see 9. above) and the fact that x acts as the complement of ˜x . 

Prove the following De Morgan Laws (Hint:  use the uniqueness of the complement)

10.  ˜ ( x + y ) = (˜x)  • (˜y)

11.  ˜ ( x + y ) = (˜x)  • (˜y)

   Related Questions in Mathematics

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Pig Game Using the PairOfDice class

    Using the PairOfDice class design and implement a class to play a game called Pig. In this game the user competes against the computer. On each turn the player rolls a pair of dice and adds up his or her points. Whoever reaches 100 points first, wins. If a player rolls a 1, he or she loses all point

  • Q : Problem on sales and budget XYZ Farm

    XYZ Farm Supply data regarding the store's operations follow: • Sales are budgeted at $480,000 for November, $430,000 for December, and $340,000 for January. • Collections are expected

  • Q : Elasticity of Demand For the demand

    For the demand function D(p)=410-0.2p(^2), find the maximum revenue.

  • Q : Where would we be without stochastic

    Where would we be without stochastic or Ito^ calculus?

  • Q : Problem on inventory merchandise AB

    AB Department Store expects to generate the following sales figures for the next three months:                            

  • Q : Solve each equation by factoring A

    A college student invested part of a $25,000 inheritance at 7% interest and the rest at 6%.  If his annual interest is $1,670 how much did he invest at 6%?  If I told you the answer is $8,000, in your own words, using complete sentences, explain how you

  • Q : Who derived the Black–Scholes Equation

    Who derived the Black–Scholes Equation?

  • Q : Use MS Excel to do the computations

    Select a dataset of your interest (preferably related to your company/job), containing one variable and atleast 100 data points. [Example: Annual profit figures of 100 companies for the last financial year]. Once you select the data, you should compute 4-5 summary sta

  • Q : Explain the work and model proposed by

    Explain the work and model proposed by Richardson.