--%>

Abstract Boolean Algebra

I. Boolean Algebra

Define an abstract Boolean Algebra, B,  as follows:

 The three operations are:

 +   ( x + y addition)

  • ( x y multiplication)~

˜ ( ˜ x  the complement  or the negation of x)

{B, + , 0 } is a commutative monoid

1. State the commutative law of addition: ___________________________________________

2. State the associative law of addition: _____________________________________________

3. State the law that says 0 is an additive identity __________________________________

{B, • , 1 } is a commutative monoid

4. State the commutative law of multiplication: ____________________________________

5. State the associative law of multiplication: _______________________________________

6. State the law that says 1 is a multiplicative identity _____________________________

7. State the distributive law of multiplication: ______________________________________

8. State the distributive law of addition: _____________________________________________

Finally  it is given that:

9.   x  +  ˜ x  = 1

10. x  •  ˜ x  = 0

The above ten properties are necessary and sufficient conditions to prove a given algebra is a Boolean algebra.

For a Boolean Algebra prove the idempotent properties:

1.  x  •  x  = x 

2.  x  +  x  = x 

For a Boolean Algebra prove the Zero and One Properties:

3.  0  •  x  = 0 

4.  1  +  x  = 1  

Prove the four Absorption Laws for a Boolean Algebra:

5.  x + (x  • y) = x 

6.  x  • ( x +  y) = x  

7.  x  +  (˜x • y) = x + y 

8.  x  • ( ˜x +  y) = x  •  y 

9. Prove that if the element y acts as the additive complement of x, i.e. x + y = 1, and y acts as the multiplicative complement of x, i.e. x•y = 0, then in fact x is the complement of y, i.e.  y =  ˜x.

Note.  The Involution Law:  ˜ ˜x = x, is true, by the fact of the uniqueness of the complement (see 9. above) and the fact that x acts as the complement of ˜x . 

Prove the following De Morgan Laws (Hint:  use the uniqueness of the complement)

10.  ˜ ( x + y ) = (˜x)  • (˜y)

11.  ˜ ( x + y ) = (˜x)  • (˜y)

   Related Questions in Mathematics

  • Q : Explain Black–Scholes model Explain

    Explain Black–Scholes model.

  • Q : Problem on inverse demand curves In

    In differentiated-goods duopoly business, with inverse demand curves: P1 = 10 – 5Q1 – 2Q2P2 = 10 – 5Q2 – 2Q1 and per unit costs for each and every firm equal to 1.<

  • Q : Problem on sales and budget XYZ Farm

    XYZ Farm Supply data regarding the store's operations follow: • Sales are budgeted at $480,000 for November, $430,000 for December, and $340,000 for January. • Collections are expected

  • Q : Probability and Stochastic assignment

    Introduction to Probability and Stochastic Assignment 1: 1. Consider an experiment in which one of three boxes containing microchips is chosen at random and a microchip is randomly selected from the box.

  • Q : How to get calculus homework done from

    How to get calculus homework done from tutor

  • Q : Breakfast program if the average is

    if the average is 0.27 and we have $500 how much break fastest will we serve by 2 weeks

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : Econ For every value of real GDP,

    For every value of real GDP, actual investment equals

  • Q : Abstract Algebra let a, b, c, d be

    let a, b, c, d be integers. Prove the following statements: (a) if a|b and b|c. (b) if a|b and ac|bd. (c) if d|a and d|b then d|(xa+yb) for any x, y EZ

  • Q : Simulation with Arena An office of

    An office of state license bureau has two types of arrivals. Individuals interested in purchasing new plates are characterized to have inter-arrival times distributed as EXPO(6.8) and service times as TRIA(808, 13.7, 15.2); all times are in minutes. Individuals who want to renew or apply for a new d