--%>

hydroxide is highly insoluble in distilled water

 : 1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer. 2) Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately 5. 3) A solution contains either Cr3+ or Ni2+ ion. Describe the reaction with a single reagent that will identify which ion is present. 4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s). 5) A black precipitate remaining from the separation of Cr3+ and Fe2+ ions from Ni2+ ion is dissolved in HCl HNO3. Some NH3 is added, followed by several drops of dimethylglyoxime. a) A colorless solution results. What do you think has happened? b) What might have gone wrong? 6) A student was analyzing an unknown containing only Group IV cations. When the unknown was treated with 3M (NH4)2CO3 solution, a white precipitate formed. Because the acetic acid bottle was empty, the student used 6M HCl to dissolve the precipitate. Following the procedure of this experiment, the student then added 0.10M K2CrO4 solution as directed and no precipitate formed. Oxalic acid was added to the solution, and no precipitate formed. a) What mistake did the student make? b) How did the mistake affect the tests for the cations in solution?

   Related Questions in Chemistry

  • Q : Numerical The volume of water to be

    The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Question related to colligative

    The colligative properties of a solution depend on: (a) Nature of solute particles present in it (b) Nature of solvent used (c) Number of solute particles present in it (d) Number of moles of solvent only

  • Q : Molarity of pure water Choose the right

    Choose the right answer from following. The molarity of pure water is: (a) 55.6 (b) 5.56 (c)100 (d)18

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS

  • Q : What is Distillation Separation by

    Separation by distillation can be described with a boiling point diagram. The important process of distillation can now be investigated. From the boiling point diagram one can see that if a small amount of vapour were removed from a liquid of composit

  • Q : Mole fraction of water and ethanol Give

    Give me answer of this question. A solution contains 1 mole of water and 4 mole of ethanol. The mole fraction of water and ethanol will be: (a) 0.2 water + 0.8 ethanol (b) 0.4 water + 0.6 ethanol (c) 0.6 water + 0.8 ethanol (d) 0.8 water + 0.2 ethanol

  • Q : Calculation of molecular weight Provide

    Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of ace

  • Q : Problem on relative humidity Relative

    Relative humidity is the ratio of the partial pressure of water in air to the partial pressure of water in air saturated with water at the same temperature, stated as a percentage: Relative  =

    Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : What is chemisorption or chemical

    When the forces of attraction existing between adsorbate particles and adsorbent almost of the same strength as chemical bonds, the adsorption is called chemical adsorption. This type of adsorption is also known as chemisorptions. Since forces of attraction existing b