--%>

How haloalkanes are prepared from hydrocarbons?

Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.
    
From alkanes

When alkanes are treated with halogens, chlorine or bromine, in the presence of light or heat, they undergo free radical substitution and a mixture of mono- and poly- substituted products are obtained.

2242_alkyl halide.png 

Although, the substitution beyond monohalogenation may be suppressed by using alkane in excess yet the method is not of much practical use because of the difficulties of separation of such a mixture.

In case of higher alkanes, different isomeric products are formed even when mono-substitution is carried out.

1702_alkyl halide1.png 

In general, the ease of substitution of different types of hydrogen atoms is:

Benzylic, allylic > tertiary > secondary > primary > vinylic, aryl

The iodination of alkanes is reversible and is done by heating with iodine in the presence of oxidising agents like conc. HNO3HIO4 orHIO3. The function of using such agents is to oxidize HI formed during the reaction to iodine, and hence shift the equilibrium in the forward direction.

264_alkyl halide2.png 

Due to formation of polysubstituted products and isomeric products, this method is not suitable for the laboratory preparation of pure haloalkanes. However, this method can be used for laboratory preparation of certain specific alkyl halides as given below:
    
When all the hydrogen atoms in the alkane are equivalent are equivalent, then it can form only one product on monosubstitution. In such cases this method may be applied.

924_alkyl halide3.png 
    
Allylic and benzylic halides can be prepared from alkenes and arenes respectively by this method because allylic and benzylic hydrogen atoms are substituted much more readily than vinylic and aryl hydrogen atoms.

260_alkyl halide4.png 

In such cases vinylic aryl hydrogens being less reactive do not participate in free radical substitution.

Allylic and benzylic hydrogen atoms are substituted very easily because their substitution proceeds via allylic and benzylic free radicals as intermediates. These intermediates are stabilized by resonance and hence being stable are formed at faster rate.
    
By halide exchange

Iodoalkanes can be obtained by treating bromo or chloroalkanes with a solution of sodium iodine in acetone or methanol. For example,

1778_alkyl halide5.png 

The reaction is known as Finkelstein reaction. This reaction is based on the fact that NaI is soluble in acetone but NaBr and NaCl are not. As a result, equilibrium in the above reaction is very much in favour of forward reaction. The reaction gives best result with primary halides.

Fluoroalkanes are difficult to prepare directly by the action of alkanes with fluorine. It is because fluoride has gor a high reactivity towards the hydrogen. It extracts all the hydrogen atoms from hydrocarbon molecule.

CH4 + 2F2  71_potassium permangnate3.png  4HF + C

However, Fluoroalkanes can be obtained by treating alkyl halides with salts like AgF, Hg2F2, CoF3 or SbF3. This reaction is known as Swarts reaction.

CH3Br + AgF 71_potassium permangnate3.png CH3F + AgBr

2CH3CH2Cl + Hg2F2  71_potassium permangnate3.png  2CH3CH2F + Hg2Cl
2

For replacement of two or three halogen atoms at the same carbon CoF3 or SbF3 is used.

67_alkyl halide6.png

   Related Questions in Chemistry

  • Q : Problem based on mole concept Choose

    Choose the right answer from following. An aqueous solution of glucose is 10% in strength. The volume in which mole of it is dissolved will be : (a) 18 litre (b) 9 litre (c) 0.9 litre (d) 1.8 litre

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : Entropy on molecular basis. The

    The equation S = k in W relates entropy to W, a measure of the number of different molecular level arrangements of the system.In the preceding developments it was unnecessary to attempt to reach any "explana

  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9 Choose the right answer from above.

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Polyhalogen compounds we need 10

    we need 10 examples for the polyhalogen compounds....please help me....need it urgently...

  • Q : Explain Phase Rule The relation between

    The relation between the number of phases, components and the degrees of freedom is known as the phase rule. One constituent systems: the identification of an area on a P-versus-T with one phase of a component system illustrates the two degrees of freedom that

  • Q : Molarity of Sulfuric acid Choose the

    Choose the right answer from following. What is the molarity of H2SO4 solution, that has a density 1.84 gm/cc at 35c and contains solute 98% by weight: (a) 4.18 M (b) 8.14 M (c)18.4 M (d)18 M

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl