--%>

How haloalkanes are prepared from hydrocarbons?

Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.
    
From alkanes

When alkanes are treated with halogens, chlorine or bromine, in the presence of light or heat, they undergo free radical substitution and a mixture of mono- and poly- substituted products are obtained.

2242_alkyl halide.png 

Although, the substitution beyond monohalogenation may be suppressed by using alkane in excess yet the method is not of much practical use because of the difficulties of separation of such a mixture.

In case of higher alkanes, different isomeric products are formed even when mono-substitution is carried out.

1702_alkyl halide1.png 

In general, the ease of substitution of different types of hydrogen atoms is:

Benzylic, allylic > tertiary > secondary > primary > vinylic, aryl

The iodination of alkanes is reversible and is done by heating with iodine in the presence of oxidising agents like conc. HNO3HIO4 orHIO3. The function of using such agents is to oxidize HI formed during the reaction to iodine, and hence shift the equilibrium in the forward direction.

264_alkyl halide2.png 

Due to formation of polysubstituted products and isomeric products, this method is not suitable for the laboratory preparation of pure haloalkanes. However, this method can be used for laboratory preparation of certain specific alkyl halides as given below:
    
When all the hydrogen atoms in the alkane are equivalent are equivalent, then it can form only one product on monosubstitution. In such cases this method may be applied.

924_alkyl halide3.png 
    
Allylic and benzylic halides can be prepared from alkenes and arenes respectively by this method because allylic and benzylic hydrogen atoms are substituted much more readily than vinylic and aryl hydrogen atoms.

260_alkyl halide4.png 

In such cases vinylic aryl hydrogens being less reactive do not participate in free radical substitution.

Allylic and benzylic hydrogen atoms are substituted very easily because their substitution proceeds via allylic and benzylic free radicals as intermediates. These intermediates are stabilized by resonance and hence being stable are formed at faster rate.
    
By halide exchange

Iodoalkanes can be obtained by treating bromo or chloroalkanes with a solution of sodium iodine in acetone or methanol. For example,

1778_alkyl halide5.png 

The reaction is known as Finkelstein reaction. This reaction is based on the fact that NaI is soluble in acetone but NaBr and NaCl are not. As a result, equilibrium in the above reaction is very much in favour of forward reaction. The reaction gives best result with primary halides.

Fluoroalkanes are difficult to prepare directly by the action of alkanes with fluorine. It is because fluoride has gor a high reactivity towards the hydrogen. It extracts all the hydrogen atoms from hydrocarbon molecule.

CH4 + 2F2  71_potassium permangnate3.png  4HF + C

However, Fluoroalkanes can be obtained by treating alkyl halides with salts like AgF, Hg2F2, CoF3 or SbF3. This reaction is known as Swarts reaction.

CH3Br + AgF 71_potassium permangnate3.png CH3F + AgBr

2CH3CH2Cl + Hg2F2  71_potassium permangnate3.png  2CH3CH2F + Hg2Cl
2

For replacement of two or three halogen atoms at the same carbon CoF3 or SbF3 is used.

67_alkyl halide6.png

   Related Questions in Chemistry

  • Q : Direction of dipole moment expected

    Illustrate the direction of the dipole moment expected for hydrogen bromide?

  • Q : Formula of diesel Write a short note on

    Write a short note on the formula of diesel, petrol and also CNG?

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Pressure and power for adiabatic

    a) Air flowing at 1 m3/s enters an adiabatic compressor at 20°C and 1 bar. It exits at 200°C. The isentropic efficiency of the compressor is 80%. Calculate the exit pressure and the power required. b) Steam enter

  • Q : Thermodynamics I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267

  • Q : Molarity of Barium hydroxide 25 ml of a

    25 ml of a solution of barium hydroxide on titration with 0.1 molar solution of the hydrochloric acid provide a litre value of 35 ml. The molarity of barium hydroxide solution will be: (i) 0.07 (ii) 0.14 (iii) 0.28 (iv) 0.35

  • Q : Explain preparation and properties of

    It may be prepared by the action of phosphorus on thionyl chloride.P4 + 8SOCl2    4

  • Q : Molarity of Sulfuric acid Choose the

    Choose the right answer from following. What is the molarity of H2SO4 solution, that has a density 1.84 gm/cc at 35c and contains solute 98% by weight: (a) 4.18 M (b) 8.14 M (c)18.4 M (d)18 M

  • Q : Molarity Give me answer of this

    Give me answer of this question. If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is:(a) 0.1M (b) 0.2M (c)0.3M (d)0.4M

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately