--%>

How haloalkanes are prepared from hydrocarbons?

Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.
    
From alkanes

When alkanes are treated with halogens, chlorine or bromine, in the presence of light or heat, they undergo free radical substitution and a mixture of mono- and poly- substituted products are obtained.

2242_alkyl halide.png 

Although, the substitution beyond monohalogenation may be suppressed by using alkane in excess yet the method is not of much practical use because of the difficulties of separation of such a mixture.

In case of higher alkanes, different isomeric products are formed even when mono-substitution is carried out.

1702_alkyl halide1.png 

In general, the ease of substitution of different types of hydrogen atoms is:

Benzylic, allylic > tertiary > secondary > primary > vinylic, aryl

The iodination of alkanes is reversible and is done by heating with iodine in the presence of oxidising agents like conc. HNO3HIO4 orHIO3. The function of using such agents is to oxidize HI formed during the reaction to iodine, and hence shift the equilibrium in the forward direction.

264_alkyl halide2.png 

Due to formation of polysubstituted products and isomeric products, this method is not suitable for the laboratory preparation of pure haloalkanes. However, this method can be used for laboratory preparation of certain specific alkyl halides as given below:
    
When all the hydrogen atoms in the alkane are equivalent are equivalent, then it can form only one product on monosubstitution. In such cases this method may be applied.

924_alkyl halide3.png 
    
Allylic and benzylic halides can be prepared from alkenes and arenes respectively by this method because allylic and benzylic hydrogen atoms are substituted much more readily than vinylic and aryl hydrogen atoms.

260_alkyl halide4.png 

In such cases vinylic aryl hydrogens being less reactive do not participate in free radical substitution.

Allylic and benzylic hydrogen atoms are substituted very easily because their substitution proceeds via allylic and benzylic free radicals as intermediates. These intermediates are stabilized by resonance and hence being stable are formed at faster rate.
    
By halide exchange

Iodoalkanes can be obtained by treating bromo or chloroalkanes with a solution of sodium iodine in acetone or methanol. For example,

1778_alkyl halide5.png 

The reaction is known as Finkelstein reaction. This reaction is based on the fact that NaI is soluble in acetone but NaBr and NaCl are not. As a result, equilibrium in the above reaction is very much in favour of forward reaction. The reaction gives best result with primary halides.

Fluoroalkanes are difficult to prepare directly by the action of alkanes with fluorine. It is because fluoride has gor a high reactivity towards the hydrogen. It extracts all the hydrogen atoms from hydrocarbon molecule.

CH4 + 2F2  71_potassium permangnate3.png  4HF + C

However, Fluoroalkanes can be obtained by treating alkyl halides with salts like AgF, Hg2F2, CoF3 or SbF3. This reaction is known as Swarts reaction.

CH3Br + AgF 71_potassium permangnate3.png CH3F + AgBr

2CH3CH2Cl + Hg2F2  71_potassium permangnate3.png  2CH3CH2F + Hg2Cl
2

For replacement of two or three halogen atoms at the same carbon CoF3 or SbF3 is used.

67_alkyl halide6.png

   Related Questions in Chemistry

  • Q : Can protein act as the buffer Can

    Can protein act as the buffer? Briefly comment on that statement.

  • Q : Inorganic Chemistry Inorganic

    Inorganic Chemistry:In the year 1869, Russian Chemist Dmitry Mendeleyev forms the periodic table of the element. Since Newlands did before him in the year 1863, Mendeleyev categorizes the el

  • Q : Problem based on normality Choose the

    Choose the right answer from following. NaClO solution reacts with H2SO3 as,. NaClO + H2SO3→NaCl+ H2SO4. A solution of NaClO utilized in the above reaction contained 15g of NaClO per litre. The

  • Q : Non-ideal Gases Fugacity The fugacity

    The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction 

  • Q : Whether HCl is a base or an acid

    Whether HCl is a base or an acid? Briefly state your comments?

  • Q : Problem on vapor-liquid equilibrium Two

    Two tanks which contain water are connected to each other through a valve. The initial conditions are as shown (at equilibrium): 683_tank question.jpg

  • Q : What is chemisorption or chemical

    When the forces of attraction existing between adsorbate particles and adsorbent almost of the same strength as chemical bonds, the adsorption is called chemical adsorption. This type of adsorption is also known as chemisorptions. Since forces of attraction existing b

  • Q : Osmotic Pressure The O.P. (Osmotic

    The O.P. (Osmotic Pressure) of equimolar solution of Urea, BaCl2 and AlCl3, will be in the order:(a) AlCl3 > BaCl2 > Urea  (b) BaCl2 > AlCl3 > Urea  (c) Urea > BaCl2<

  • Q : Some basic concepts of chemistry an

    an atom of an element is 10.1 times heavier than the mass of a carbon atom.What is its mass in amu?

  • Q : Application of colligative properties

    Choose the right answer from following. Colligative properties are used for the determination of: (a) Molar Mass (b) Equivalent weight (c) Arrangement of molecules (d) Melting point and boiling point (d) Both (a) and (b)