--%>

conclusion using p-value and critical value approaches

A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evidence that the variance in the number of patients seen per day is less than 10? Use α = .025 level of significance. What is your conclusion using p-value and critical value approaches. Is the conclusion different in both the cases?

E

Expert

Verified

 

Hypothesis Formation

H0: σ =10

H1: σ < 10

Test Statistics

χ2 = (n-1).S2/ σ2

Critical Region

Reject H0 in favor of alternative if χ2 test statistic lesser than the critical value of χ2

i.e χ2test statistic < critical χ2

Critical value of χ2 at 0.025 Significance Level for single tail test

Df = n – 1 = 9 – 1 = 8

Critical value of χ2 with df 8 and alpha 0.025 = 2.18

Computation

Data (X)

X – X-bar

(X-X-bar)2

24

2.111111

4.45679

26

4.111111

16.90123

21

-0.88889

0.790123

17

-4.88889

23.90123

16

-5.88889

34.67901

23

1.111111

1.234568

27

5.111111

26.12346

18

-3.88889

15.12346

25

3.111111

9.679012

 

Sum of (X-X-bar)2 = 132.89

S2 = 132.89/9-1

     = 16.61 

χ2 = (9-1)*16.61/10

    = 13.29

Decision

As χ2 statistic is not less than critical value, therefore we can’t say that variance is less than 10. P-value for critical value is 0.01 and it is approximately found from χ2 table.  P-value is greater than our tolerance for ambiguity therefore we can’t that variance is significantly lower than 10.

 

   Related Questions in Advanced Statistics

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Random variables Random variables with

    Random variables with zero correlation are not necessarily independent. Give a simple example.    

  • Q : Probability on expected number of days

    It doesn't rain often in Tucson. Yet, when it does, I want to be prepared. I have 2 umbrellas at home and 1 umbrella in my office. Before I leave my house, I check if it is raining. If it is, I take one of the umbrellas with me to work, where I would leave it. When I

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d

  • Q : Calculate corresponding t value or s

    1)    Construct a 99% confidence interval for the population mean µ.   2)    At what significance level do the data provide good evidence that the average body temperature is

  • Q : Problem on Poisson distribution The

    The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer

  • Q : Problem on layout A manufacturing

    A manufacturing facility consists of five departments, 1, 2, 3, 4, and 5. It produces four components having manufacturing product routings and production volumes indicated below.   1. Generate the from-to matrix and the interaction matrix. Use a

  • Q : Probability problem A) What is the

    A) What is the probability of getting the following sequence with a fair die (as in dice):B) What is the probability of getting the same sequence with a die that is biased in the following way: p(1)=p(2)=p(3)=p(4)=15%;

  • Q : Pearsons correlation coefficient The

    The table below illustrates the relationship between two variable X and Y. A